Veuillez utiliser cette adresse pour citer ce document : http://edoc.bseu.by:8080/handle/edoc/85026
Affichage complet
Élément Dublin CoreValeurLangue
dc.contributor.authorStankevicius, G.-
dc.date.accessioned2020-11-10T14:17:22Z-
dc.date.available2020-11-10T14:17:22Z-
dc.date.issued2001-
dc.identifier.citationStankevicius, G. Forming of the investment portfolio using self organizing neural networks / G. Stankevicius // Информационные сети, системы и технологии = Information Networks, Systems and Technologies : в 3 кн. Кн.1 : Труды международной конференции ICINASTe'2001, Минск, 2-4 октября 2001 г. : на англ. яз. / Ред.: А.Н. Морозевич [и др.]. - Мн. : БГЭУ, 2001. - С. 159-163.ru_RU
dc.identifier.isbn985-426-692-3-
dc.identifier.urihttp://edoc.bseu.by:8080/handle/edoc/85026-
dc.description.abstractThe problem of comparison of different companies is facing, when looking for possible candidates for the investment portfolio. Screening of the companies, using “well-known” trading strategy parameters, is one of the ways to solve this problem. Actually, much more companies appear on the list, than the trader is willing to buy. To define the best companies or group of the best companies self-organizing (Kohonen's) neural network could be used. Using fundamental financial parameters as inputs, the output of neural network forms the different groups of companies located into a number of disjoint clusters. Then, by the special averaging technique, the 3D map of quality of investment could be formed. Investing portfolios could be formed by simple technical analysis approach. Non-linear ranging technique was applied as an alternative to self-organizing neural network procedure. The certain meanings of weights were given to the factors, which characterize the companies. Then, by estimation of all weights, companies were assigned to their place in the general listing. Four different portfolios were formed as a result of these researches. The performance of these portfolios showed which of the researched techniques gave better result. The real data from USA stock markets was used for the realization of the whole idea.ru_RU
dc.languageАнглийский-
dc.language.isoenru_RU
dc.publisherБелорусский государственный экономический университетru_RU
dc.subjectторговые стратегииru_RU
dc.subjectнейронные сетиru_RU
dc.subjectматематические методыru_RU
dc.subjectэкономический анализru_RU
dc.subjecttrading strategiesru_RU
dc.subjecteconomic analysisru_RU
dc.titleForming of the investment portfolio using self organizing neural networksru_RU
dc.typeArticleru_RU
Collection(s) :Информационные сети, системы и технологии = Information Networks, Systems and Technologies

Fichier(s) constituant ce document :
Fichier Description TailleFormat 
Stankevicius_G._159_163.pdf308.63 kBAdobe PDFVoir/Ouvrir


Tous les documents dans DSpace sont protégés par copyright, avec tous droits réservés.