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ABSTRACT decision as the real simplification of our problem can
be made in a quite other direction. Proposed models

In this paper some models for obtaining the are based on the random walks approach [3;4] and
distribution of a sojourn time in CDMA cellular can adopted for different conditions. Analytical
systems are proposed. Knowing this distribution is results are obtained and simulation models are used
necessary for reliable modeling of the soft handoff for Monte Carlo eXperiments [5].
and for solving some other problems in the cellular The rest of the paper is organized as follows,
systems analysis. Proposed model is based on the Section 2 is devoted to the main modeling
random walks approach and can be adopted for assumptions, notations and concepts. In Section 3 we
different conditions. Analytical results can be explain how to reduce the problem to one-
obtained for simple and unfitted cases so dimensional one. Main distributions are discussed
simulation models are used for Monte Carlo there also.. In Section 4 we discuss obtaining the
experiments. Main assumptions include different probability of a mobile appearance on the border of
kinds of mobile carriers (pedestrians and transport soj oum ZOne. Analytical model is discussed there
passengers) and round form of a cell. The scheme jn separate subsection. Section 5 presents the
of simulation experiments is presented along with description of simulation model and simulation
the discussion of simulation results. results. Section 6 is a brief conclusion.

1. INTRODUCTION 2. MODELING ASSUMPTIONS

It is known, that the same frequency band can be jn order to simplify the modeling of the soft
used simultaneously over neighboring cells in CDMA handoff we have the following assumptions:
cellular systems. This enables so called soft handoff e a base Nation is located in the center of polar
scheme, when the new base station (BS) is assigned to coordinates'
a mobile while this mobile is still served by old one .  the aeriai 0f BS is omni-directional; 
and will be served by it until reach some outer handoff .  a сец ^as rouncj fomr
border. The assign of new BS occurs when a mobile ,  soft handoff region has ring form and lays
reaches some inner handoff border  or just starts call between inner and outer bounds that are defined
inside handoff zone. In the last case two or more by radiuses r and R respectively (see fig. 1 );
stations are assigned to this mobile, but for distinctness .  a mobiIe can move all directions and has a non-
we will consider one of them as old . . . zero probability v  of been motionless;

For different models of the soft handoff it is • a mobile can start call at any point (x,y) of a cell
necessary to have distribution of the sojourn time or uniformly (in Cortesian coordinates),
time when an active (busy by call) mobile is inside e observations of a mobile position are made with
the handoff zone. Unfortunately, there is no real constant time intervals ^  so time of ш
available data on the sojoum time, so some authors observation is iAt '
make attempts to obtain this distribution from some .  call durations Tc] are independently and equally
plausible (sometimes not very) reasoning. In last distributed random variables. The distribution
years some papers concerning this problem were (Iet us denote its cumulative function as G(t)) is
published. Our attention was attracted by [1] and we renewal one 
have tried to improve the model proposed by its
authors. The use of round form of a cell seems good ^ REDUCING T o ONE-DIMENSIONAL 
choice for us but we can t to agree with the model or PRORI FfV!a mobile movement that was proposed in this paper.
Than we found new results of the same research Among the base assumptions mentioned above
group [2]. In this paper authors tried to simplify the we w j|] present some more that from one side
problem by considering the square form of a cell require explanations and from other helps us
instead of the round one. We think this was a wrong greatly simplify the problem.
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Figure 1. Sojourn area and its one
dimensional projection

First. As only the time in a handoff zone is of 
interest, we can just assume that a call starts with 
some probability со on a zone bound, or uniformly at 
any point inside it. So we give no attention to mobiles 
inside the inner round. As no difference exists for 
sojourn between exiting the sojourn zone into an 
inner zone of any neighbor cell and motions are 
omni-directional, we can consider all incoming into 
the sojourn zone mobiles as penetrating through one 
border (say, inner one).

Second. As inter-observation intervals are 
constant, we can assume that a mobile velocity is step 
function unchanged on them. So distance that a 
mobile goes between observations at time t, and ti+i is 
simply VjAt. For more adequacies we also assume 
that there is non-zero probability v that this distance 
is 0 (mobile was immovable or moved without 
changing a distance from the BS). Each time when 
the inter-observation interval comes to an end the 
new value of velocity is chosen accordingly to a 
given probability distribution. Values are 
independent and equally distributed.

Third. As any movements along the ring are not 
interesting from the point of sojourn time, we can 
analyze only there projection on the radial direction. 
So our task is one-dimensional one (!) (see fig. 1).

Note that in our models we need not the 
distribution of inter-calls intervals. We need not any 
information about number of mobiles in the sojourn 
area (or in cell) also.

4. Obtaining  T he Probability 
D istribution of a Sojourn  T ime

Now we will discuss possible initial 
distributions and obtain corresponding distribution 
of a sojourn time.

As it is usual practice, we assume that random walk 
process is renewable. From this we have that mobiles 
that are detected on the inner border are treated 
uniformly as all of them are just started connection.

Let us define the distribution of speed in the 
radial direction. As the most plausible variant we 
choose the following.

=  I  ( 1 _ v ) F ( x ) ’  i f  * < 0 ;  m
v 1 v  + (1 -  v)F (x), otherwise.

Here F(x) is some cumulative function of some 
distribution (its form is discussed later) with non
zero expectation V, and v is the non-zero (in a 
common case) probability of zero speed as it was 
mentioned above.

The form of a function F(x) we obtain from the 
following assumptions:
1. user of a mobile can be pedestrian or driver 

(passenger) of some transport;
2. user can change his status during the call time 

(pedestrian takes a seat in a bus or passenger 
goes out from a taxi, for example).

From this we have that
F(x)=5Fp(x)+(l-5)F,(jt) (2)

where Fp(x) and F,(x) are the cumulative 
distribution functions of velocity for cases of 
pedestrian and vehicle respectively, 5 is the 
probability that the user is a pedestrian. So the final 
common expression for the cumulative distribution 
function of a velocity is

(1 -  f , ,  (x) + (1 -  (x)], if  x<r,
Fv{x) =

P + Q -P ) [8 F p(x) + ( \ - 8 ) f ,(x)\, otherwis.
(3)

As for the kind of Fp(x) and F,(x) we choose 
normal (Gauss)distributions with expectations mp 
and mh and standard deviations ap and a, 
correspondingly.

Now the task of obtaining the distribution of the 
life-time of an active mobile inside the sojourn zone 
Ts is reduced to obtaining the distribution of 
minimum value from pair {TzaTx}, where Tz is time 
of a mobile existence inside the sojourn zone and 
Tzc is part of call duration from the moment when a 
mobile enters the sojourn zone to a call end. Using 
our assumption about the distribution of a call 
duration being renewal and from (3) we have:
Fs(x) = P(m\xiTzc,Ts} <x) = P(Tzc < xvT s <x) =

| FTzc(*)+Fr,M - FT:,(*)FT,(x), i f x>0 (4)
[ 0, otherwise.

So our task is to obtain the distribution of Ts. To 
solve this problem analytically is not simple. The 
solution requires special methods that are explored 
in the theory of random walks (Brownian motion is 
a partial case). Those who is interested can refer, 
for example, to [5] and [6]. Here we present some 
analytical results along with experimental results 
obtained by the Monte Carlo method.

4.1. Distribution Of Tz

Thus we have the following problem. At the 
moment /=0 the random point is distributed over the 
interval (a,b) with a density h(t). At the moments
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t - 1,2,... it makes motions of random length Xt (X, So, if at the moment r=0 the normalized density
can be of any direction). The lengths of all motions function of the point in the interval (a,b) is h0, then
are distributed with an identical density/^ on a real it is possible to obtain normalized distribution
axes (-00, oo ). We need to find: density h t of a point in the interval {a,b) at the
1. distribution of the moment of the first exit of a moment t= 1 by the formula (5).

point from the interval (a, b)\ Let hk be the normalized density function of
2 . a probability PN that the point for the first time points in the interval (a,b), which in the first к 

leaves the interval (a,b) at the moment t=N. motions have never left the interval (a,b). Then, in
We denote by N the number of motions that is the same way as for transition ho —» hi from the

needed for the first leave from the interval (a,b). density h0 to the density hu we obtain the recursive
The distribution of N is formula for transition hk ->hk-

P(N=ri)=pn, P o+ P i+ :.= 1. h k+i ( x )  = —  X(ab}( x ) - [ h k* f l ( x )  (6)
First we find the distribution of N. Pk
Denote by Bk the following event: the point for where

the first time leaves the interval at £-th step. Let the -  t i t  * f  1ft ) It
probability of event Bk be known (we will know 1 tk
how find it after solving the task 1): P{Bk)=Pk. The The value p k is a probability that the point
event Bk does not depend on event {AM:}. which has not left the interval (a,b) in k-\ motions,
Therefore the probability of occurrence of event w*4 not leave it on ft-th step. Therefore, the
Ak={N=k}Bk is equal to the product p kPk. The probability Pk that the point will leave the interval
events Ak are incompatible at different values k, (a, 6 ) at A-th step for the first time, is equal to 1 -pk.
therefore the probability P that the point for the first Thus we have the following algorithm to obtain
time leaves the interval (a,b) at the random moment va^ es ^k- Successively, we obtain densities h0
N is equal to the sum pi+p2+.... Thus we need to h/ —> h2 —>... by the recursive formula (6).
find the probabilities Pk, that is to solve the task 1. After we find the next density hk(t), we obtain

Consider in detail how to obtain the density of the probability Pk by the formula
points, which have not left the interval (a,b) at the . *
moment f= 1, that is after the first motion. The P* = l~  \fhk* f  ](*)&. 
distribution of such random point coincides with
distribution of the random variable Y+X,. The density Let's make the short remark on computational
of this sum is equal to convolution [h*f]. Let: algorithm for the density hk and probabilities Pk.

é  We can change the boundaries of the interval (a,b)
P 0 = I h{t)dt, h0(t) = hi t )  byan appropriate linear change of variables.

Transform the interval (a,b) to (-1,1)- Rewrite in
(certainly,/70=1, as h is normalized density); Z(o,i) -  more detaH the formula (6):
characteristic function of interval (a,b), i.e. I

f l ,  t e  (  a , b  ), hkA x )  = - - l h k( t ) f ( x - t ) d t  (7) 
X ( a b ) ( * ) = \[ 0 ,  t g (  a , b  ). Note, that to calculate this convolution we only

So density of a random variable Y+X, is equal need to know the values of .the function /  on the
t0 interval (-2 ,2), and the function h is defined on an

v, interval (-1,1). Expand the functions h and /  to
f h o * f J ( x ) = u i a ( t ) f ( x - t ) d t  Fourier series on appropriate intervals. Using the

It is a density function of a point after the first coefficients of expansion, we can obtain simple
motion. No limitations are imposed on a position recurs,v® expressions for these coefficients for
of the point, after a motion the point can leave the senes of ̂ ^ tio n s hk and integrals Pk. 
limits of the interval (a, b). Normalized distribution
density h t of the point after the first motion Ш ,a a a
provided that it has not left the interval (a,b), is Here we try to choose reliable or at least
equal to reasonable initial data for simulation.

1 First to all let us to estimate parameters of initial
A l(*) = —  Z(a.b) (*)[йо * / К *) (5) distributions. Average value of a pedestrian speed lies

obviously somewhere between 3 and 6 km while 
average value of a speed of some vehicle ought to be
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chosen from wider range and highly depends on area: obviously smaller than in a city park or recreation
it may be from 20 to 40 km for city and up to 70-80 zone. We have no real reliable information about
km for a country. We consider the projection of a its value but been guided by common sense we
moving vector on a cell radius so the average simply made simulation with different v e [0,0.3].
absolute value of speed with which carrier goes to the Âs f°r ce4 radius and width of sojoum zone we
border is Vll=2V/iz, where V is linear speed of a choose R equal to 400,500,800,1200 and 2500 m
carrier. The multiplier is simply obtained by and r  equal to 0.8 or 0.9 of Ä.
rransformation of a motion in Cartesian rectangular _ , ,  ,

Table 1. The values of w obtained by simulation coordinates into motion in polar ones. So the average __________ ____________________  ________
speed with which a pedestrian goes to a cell border is 5 0.2 0.5 0.8
about 2-4 km while these speed for a vehicle is about R=400m о 684 0 677 0652
.2-27 km for a city and 47-53 km for a country _ ~. _ \ , . , . . .  R=500m 0.682 0.673 0.644
region. As for a reliable variance, we obtain it from a -------------------------------------------------------------------
simple reason: the probability of a speed being more —R-800m--------0.673----------°_660______ 0,618
±an twice from average ought to be negligible, say R= 1200m 0.662______0-644______ 0-583
r.oi more than 1%. So, if an average speed of a R=2500m 0.626 0.589 0.489
pedestrian is 3 km then correspondent standard
deviation is 1.29 km. 5. SIMULATION RESULTS

Next we need the probability со of an active
mobile entering the sojourn zone through border The simula<'°" m»df' 15 геа«У rather simple and
call does not start inside the zone but continues). ne,e<l "ot additional explanafon. Here the most

-  . . .  v  r ,, • , .. ,, interesting results are presented. Time interval Atr or this we use the following simulation: calls , . c  j  . , .  ,. . . . .  ° , .. between changes ot speed is equal to 5 sec. starts inside the inner part of a cell (radius r),
—otions are simulated according to the scheme -  , ^ __ . ™  A ^  n. . . .  , w  b . .  . 5.1. Dependency Of to From A Cell Radius
described above and Me -  a number of mobiles
saving the inner part while call have not yet Making 100000 experiments for each variant
ir.ded, is stored. Let M  be the whole number of with r=0.SR and и=0.1 we obtain for ^ = 3  min
emulated calls. Note that part of M in  the whole the results presented in tabl. 1. Simulation takes
--imber of calls started inside the cell (radius R) is about 10 seconds for value in average on PC with

Rr. So ш is obtained as: Intel Pentium II, 400 Mz inside.
(û=Mer 2/[Mer2+M(R2-r2)\. It is easy to see that value of ш decreases with

For cells large enough we can consider the tlle growth a ce^ radius. This is due to the fact
rows of mobiles through inner and outer borders Jhat Wlth the grow?h of a ceU radlus more calls
is  equal and so we can simplify our simulation ave îme ®nougl1 f°r completion inside the inner
~odel and treat all the incoming calls as entering part of a cell, 
rrough inner border. Then

2 2 ,-, 5.2. D istribution Of A Sojourn TimeG)=2Mer2/[2Mer2+M(R2-r2)]. J
The division of carriers into pedestrians and Simulation had been made for some

passengers is not constant and greatly depends on combinations of parameters. Values of to were
irea: almost all are pedestrians inside a city park taken from the table presented in the previous
ind almost all are passengers on the highway subsection. As it was expected, experiments show
crossing. So we have tried 5=0.0,0.1,0.2...,1.0. that the distribution of a sojoum time greatly

The intensity of a call flow is of no difference depends on the zone width and average speed of a
for our task. The average call duration ^ w e  mobile carrier’ the last df ends on divisi°n of

carriers on pedestrians and passengers. In fig. 2
c-oose to be equal to 3 minutes that is rather and f  3 we can see this d e a r, In first case
common choice. But we made experiments with ayerage sqjoum tjme abom g secQnds (maximum

T- equal to 2 and 4 minutes also. _ 45 sec) while in second, where part of
We need also the value of v -  the probability of pedestrians is a majority, average sojoum time is

i  mobile being immovable. This probability can about 17 seconds (maximum -  135 sec), 
significantly differ in different areas: on a road it is
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_________________________ Detailed simulation of the motions of an active
и м н  mobile inside the sojourn zone, made with
» • H |  assumption of a round form of a cell gives results

that differs from results presented in [1,2]. It seems
s “»“I B  to us that our assumptions are more reliable than 
° 3150 ІЯВІI 2700 щ I  those in these papers but the final choice can be

noo ш В ш а  made only on analysis of real data that is
*m щ В Ш ш я inaccessible for us.
*5; М М И в » , п . . -------------------------

0,00130 0,00361 0,00584 0,00*06 0,01029 0,01251
0,00250 0,00473 0,00605 0,00017 0,01140 ^  ( C O N C L U S I O N S

S ojou rn  t im «  (0,00139 h o u rs  =  5 se c o n d s) *

Figure 2. Histogram of sojourn time for /?=400m, Thus, using simulation technique we have
r=320m, 5=0.2 obtained some results on analysis of distribution of

the sojourn time in TDMA systems. Analytical
For large cells the dependency on average approach to calculation of main parameters is also

speed is even more. In tabl. 2 the results of presented. We believe that our present work is of
experiments with a cell outer radius equal to 2500 some help to those who makes researches in this
m and different inner radiuses are presented. The area, 
number of experiments for each radius was
100000,1^0.05,8=0.2. MH|

^ _________________________________  ̂ •■»»' a

* M 0  Эк ! !  1  1,004 °  -

^  - 0  M  110 IS O  2 0 « 250 300 350 400 450 500 550

0 ттгтлгт H I........ , I W ldttl o f  i r io u r n  io n *
0,00139 0,00862 0,01505 0,02307 0,03030 0,03753 

0,00500 0,01223 0,0194« 0,02669 0,03392 

t e t« u r n  t )m «

F igu re 4. Dependency of an average time of
Figure 3. Histogram of sojourn time for sojourn from the width of a zone 
Ä=400m, r=320m, <5=0.8

In fig. 4 the dependency of an average time of R eferen cies 
sojourn from the width of a zone-is presented
(column 3 of the tabl. 2). It is clear that [1]. Suwon Park, Ho Shin Cho, and Dan Keun
dependency is almost linear. The same is with Sung, “Modeling and Analysis of CDMA Soft
maximum value also. Handoff1, VTC’96, Atlanta, U.S.A., pp. 1525-

1529, 1996.
Table 2. Dependency of sojourn parameters from the [2 ].Jae  Kyun Kwon and Dan Keun Sung, “Soft

width of sojourn zone (times are in minutes) Hadoff Modeling in CDMA Cellular
; “  Average Ts Maximum Ts Systems,” Vehicular T e chn o lo g y  Conference,
-------- ---------------------------------------Ш к ---------  IEEE 47th, Vol. 3, pp. 1548-1551, 1997.

---------------- :----------------:--------------------- :---------------  [3]. W.Feller, An introduction to p robab i l i ty  th eory
2050 0 669 0 00628________0 0264______ and  its applications,  John Wiley\&Sons, 1971.
2100_____0-712______ 0 00577________0 0250______ [4]. F.Spizer, P rin c ip le s  o f  random  walk,
2150 0.752 0.00524 0.0236 Princeton, New Jersey, 1964.
■7200 о 792 о 00471 0 0236 [5]- J.M.Hammersley and D.C.Handscomb, Monte-

1 г »  "0ІЙІ M  l o r n  Carlo Methods, Mahmn&Co  Ltd, 1964
----------------------------------------------------------------------- [6].T.~Hida, Brownian Motion, Springer-Verlag,
2300 0.868______ 0.00355________ 0.0181______  19gQ
2350 0.904______ 0.00299________0.0167
2400 0.937 0.00242________ 0.0139______
2450 0.970______ 0.00176________0.0125______
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