
EXPERT SYSTEM DEVELOPMENT WITH K A P P A P C

Maurice Danaher

School of Computer and Information Science, Edith Cowan University, Perth, WA 6050, 
AUSTRALIA, m.danaher@cowan.edu.au

ABSTRACT • Interfaces to SQL databases, spreadsheet
. , ., jr programs and CAD packages.This paper describes KappaPC -  an expert

system development environment. KappaPC is For this study version 2.4 of KappaPC was used
being used in the development of a knowledge- on a Pentium 3, 550MHz computer with the
based system for preliminary structural design. As Windows 98 operating system.
very little information has been published on KappaPC may be described as a complete
KappaPC a discussion of this environment should development environment, which provides a wide
prove very helpful to potential developers. An range of edit tools and debuggers for designing and
overview of the system is presented and its running applications. In the KappaPC system, the
capabilities and features are described. The active components of the application domain are
advantages and benefits of the system are represented by data structures called objects. These
discussed as well as weaknesses and limitations. objects can be either classes or instances within

classes and they may represent concrete things like
1. INTRODUCTION building subsystems, such as the floors or the walls

,T ... • . . .  or components like beams and columns. TheKappaPC (Intelhcorp 1996) is an application , . . , , . t ,  ̂ ..., .  -, ' T . , .  , ob ects can also represent intangible concepts likedevelopment environment tor PCs.,It is being used  ̂ . * ?  . ,. , I 1 . I . cost or evaluation criteria. A developer can linkto develop a prototype knowledge-based system to , . .  ̂  ̂ ,■r. .. , .Г . , , . ob ects together into an ob ect hierarchy toassist with preliminary structural design. . ?  , . . . ^„ .. . r  . . . . .  ^ . represent the equivalent relationships among thePreliminary structural design is the first stage in ■ ,, . I к ob ects in a model abstracted from a particularthe design or buildings when overall concepts are domain
considered. These include shape, form, layout, —, ' , „ „ , . . . . ., . ^  . , ■ I he object-oriented programming tools withmmaterials, cost and others. During this early design v  , , . . , , . , . ,. . .  , J e KappaPC can be used to provide these objects withstage many decisions are based on experience, *7 , , . , . . . . . . .  , ... ^methods, which contain algorithmic code like thatrules or thumb and judgement. -, , ■ -, ■ ,T . . . . ■ , , round in the functions in conventional programs.

Little information has been published on „  *i_ l- - j  j  l u -j  j,, , r .  Once the ob ects and methods have been identifiedKappaPC, apart from a handful of very brief -, , , , , + ,K , tor a knowledge base, then the system can bepapers. These reports primarily discuss the , , , c , , , . . , ̂ , ,r . . r  , . . .  developed. System development commences withapplication tor which it was used and give little . . .  -, .. . , ., ,_ . . . . .  5  . the production of a specification to describe howdetails about its features, capabilities, usefulness or , . . . , , , , . ...J,. , the objects are to behave and how the system will
ease of use. Hasan et al. (1994), Kiernan et al. u ♦ u- * о * u u^ i j  reason about the objects. Systems built on(1996) and Tsang and Bloor (1994) have reported v  nr, ,, . . f  ... ,, , , , , , , , KappaPC usually require a set of pre-written rules,on knowledge-based systems that they built or , , , j. . . . .  . ,r J „ . .  . . where each rule specifies a set of conditions and awere building using KappaPC. For this study the . , - , , , ....■ ■ j ■ , 1 set of conclusions to be made if the conditions aresystem has been examined in detail. , . ,J . , . . true. The conclusions may represent logicalKappaPC is designed to provide the following: . , . • , . , . , т.^  0 r  e deductions about the objects in the knowledge base
• Expert system tools, including an inference and how they might change over time.

system. In KappaPC each rule is a relatively
• Graphical object-oriented application independent module and a reasoning system can 

development in a standard С implementation; be built gradually, rule by rule. KappaPC also
• Integration with existing MS-Windows allows the developer to use object-oriented

applications including support for Windows programming to combine and unify many
Dynamic Data Exchange (DDE), and Dynamic standard AI methodologies such as, frame-based
Link Libraries (DLLs); representation, production rules, demons or

• Production of ANSI С program code monitors and graphics into a comprehensive
executables, which allow for the efficient hybrid system.
distribution of the finished programs;

International Conference on Information Networks, System s and Technologies

72

http://edoc.bseu.by:8080

mailto:m.danaher@cowan.edu.au


Minsk, Belarus, October 2-4, 2001

The package starts up with a series of windows 
as shown in fig. 1. These windows control the 
operation of the Kappa system and allow the user 
to bring into view a number of other windows. The 
Object Browser window allows the user to view 
graphically and edit the class structure of a 
program. The EditTools windows provide the 
facility to edit data objects, which consist of 
classes and instances, rules, goals and functions.

Я Ш
£d* £jpton»

l-c! i l l  Ж  IP
I-io O cf

И<Нр

Obt«ct Se**kiA EdM KAL KALVIewt Find Fute Rule |ft|£ieftC( 
BiiMvxpi Toulx lutciixclin Dc-buMuci Flcplac-c Flctalkina I  i<k c  B iuMicr

112] Object tt rowi-еч
£1* Е.Л QpSoti*

±1

Л

<311

m
Pywclion |p|

aist-i) kk*ffa.p.. I. ж |г1КА№А.||5Ч||г|оыс... а и ^ т °  I агзз

Figure 1. KappaPC application • development
input screens

User interaction with KappaPC proceeds 
graphically, the system being accessed via a 
mouse, or by typing into one of the five custom 
editors or via the Interpreter Window, which 
allows commands, statements and functions to be 
input and executed interactively. Graphical input 
can also be effected via the Object Browser or via 
one of KappaPC's Session Windows.

2. Objects

Objects are represented in KappaPC as classes 
and instances of classes. These can be organised 
into hierarchies or taxonomies using subclass and 
instance relations. Fig. 2 reproduces the Object 
Browser, which displays part of the knowledge 
base developed during the study. These objects are 
all classes and the links between them are shown.

The solid lines indicate subclass links, which 
partition the Rib-Moulds class. These links 
represent is_a_subclass (is_a_member_of) 
relationships. KappaPC also provides for the 
is_a_kind_of or instance of relationship. However, 
these are the only relationships provided for 
explicitly in KappaPC and other kinds of 
relationships must be implemented indirectly. For 
example a developer can use the slots in objects to 
create links to other objects in order to represent 
association type relationships. These

is_a_member_of relationships are used throughout 
the design tool system created during the study to 
construct representations of the design alternatives 
at different levels in the design hierarchy.

i Qbjairl Bivwxor
_____  Mefr 

/П№С0_175_1Ю л 1

on! ds -  П Ш

,.*Щ0Н_175{ • rWO0_175~12t>
/ ’ F^QClt75l50

.̂rainDjzsaj»
I ./> ra60G_2Sa_75
I /ftfio.»..250 m m  2S0 100 
/ /  \; * НЙПП_25П_12*
!*■' 4 г«500_250̂ 1«>

/ЙЛЛй 325 50

SR£G® WCGO J32aIlOO
№QQ Э25 125 

'l чШ*11П__325_1а4*
V ... R600_400I50
\ /С mm 4.00 75
‘‘Hfiaa^oo <rr -fuiciD_4Pu_itto

XymmjbQQ-tzs" mrin ±m

Figure 2. The Rib-Moulds Object Hierarchy

The links between objects also provide the 
paths via which objects inherit attributes from 
other objects higher in the hierarchy. Each class 
can have any number of slots and KappaPC 
provides two kinds of slots, member and own. The 
member slots of a class are inherited by its 
subclasses while the own slots are not. 
Furthermore, when a subclass inherits a member 
slot the slot also acts as a member slot for the 
subclass, if this subclass is a subclass of the parent. 
Otherwise it inherits it as an own slot and cannot 
pass it on to its subclass.

3. Slots

KappaPC provides a data type, referred to as a 
slot, which resides in the Kappa object, which may 
be either a class or instance. The user can update 
the slots to tailor an object so that it may represent 
the important properties of a real object. Each slot 
can be used to describe a characteristic or attribute 
of the object. To specify the attribute, the user 
assigns a value to the slot.

Slots are inherited down the object hierarchy, 
and as the hierarchy grows, the classes lower down 
gradually accumulate inherited slots. As noted 
above, objects can have their own slots and they 
can inherit slots from ancestor classes, i.e. classes 
above them in the class hierarchy.

When an object inherits a slot from an ancestor, 
the object does not have to maintain the inherited 
slot value; the user can make the slot local to the

73



subclass and then insert a different value from the objects. These changes are effected
one inherited by the slot. KappaPC also allows slot programmatically using a variety of assignment
values to be changed programmatically. This functions and the new values are then reflected in
feature is very useful for programming knowledge- the subsequent levels in the hierarchy. This
based systems. Slot inheritance provides a shortcut shadowing effect of inheritance is a useful feature
to updating attribute values throughout the of object-oriented programming; all objects below
hierarchy. If a slot value is changed at a point in an object with a local slot are affected by the
the hierarchy then the change will be reflected in change.
values of the slots lower down the hierarchy, KappaPC provides a set of standard slot options
which have been inherited down through the to describe and manipulate object slot values,
hierarchy. These slot options describe slots in much the same

Local slots describe features that are private to way that slots describe the attributes of objects,
the object that contains them. If the object is a Furthermore, a given slot can have many different
class, its local slots describe that class itself (as options, while at the same time having no value
opposed to its members). If the object is an assigned. If a slot does not have a value, at a point
instance, its local slots provide information about in time, then KappaPC assigns it the value NULL,
that particular instance. The user can input and Also if a slot value is reset (and it did not have a
change slot values using the slot editor, which is value before it was assigned one), the new value of
shown in fig. 3. the slot will be NULL.
ННИНТТТИ^ТТТ^ЯДГТЯТЯТГДП1̂ Т П П  The types of slot options provided by KappaPC

are:
*YUueiß) r^C an ün U ty— —--------
— - j - ' . - - - - - —  j ,  Cardinality (single or multiple), this specifies

I g. » nyfi[t).. i_ the number of slot values allowed, if multiple
Rangt I------------- ----------- -̂---- 's c^osen ^ e  slot can have multiple values,

* Value Tjpe which are input in the form of a list;
М »  Yalw ] * I Inttmriti? ^ P w q p t J  * Allowable Values, this describes the set of

Г“-1—~ I !---------- ±=JI---- ------1 allowable slot values, ie. a Boolean slot would
Маж VaU» j_____ —j have two values; TRUE and FALSE;

r lH n ito n ............... ........................ ....... ....... ............., • Value Type, this option controls the type of the
*ШЧевіІм1 _3 _j * slot values, ie. text, number, Boolean or object, 

-------------------------- л which can be the name of a class or an
* Wto* Accessed d  _ J  instance;
* Beftro Change w * 9 Slot Inheritance. This option controls the

------------------------- -t j inheritance behaviour of the slots; the values of
* After Change ______________ Л  j which can be passed down the hierarchy or

г  SbetteheiritMice------------------- ----------------- stopped at this object using the Slot Inheritance
^ .............. ,, r . OK option; andС Full In«enfann-. io Smbnlnssrsr ; ■■n— .— a

• Change monitors or demons, these options
^  ^ et^ ajTr:e __c .... include the If Needed, WhenAccessed, Before

r** . „ . ____ _ . „  , . Change and After Change monitors. These areW * Ask Yabw If NULL in Backward » s e t  , , , . , , ............................................................................ ■■■■■.■■ ■■J methods that are activated when object and slot
pairs are accessed. They are used extensively in

Figure 3. The Slot Editor systems that rely on rule-based reasoning.
Monitors may be defined as private functions or

Once a slot is made local and the value of the functions that change the value of slots
slot is changed, all classes and instances that elsewhere in the object hierarchy. The If
subsequently inherit the slot get the new value. Needed option contains the name of a method in
This feature was used in the system designed this object. The method is automatically
during the study. As the system’s search tree of executed when the value of the slot is requested
design objects grows, new partial designs are and there is no value in the slot i.e. when a
added and at certain levels in the tree detailing value is needed. Likewise, if the WhenAccessed
calculations are done to estimate and fix the initial option is attached to the slot, then the method is
sizes of component parts. These calculations result executed when the slot is accessed, even if the
in changes to various slot values in the design value of the slot is known.

International Conference on Information Networks, Systems and Technologies

74



Minsk, Belarus, October 2-4, 2001

4. M e t h o d s

Apart from information that describes the 
object’s characteristics each object also contains 
information that specifies its behaviour. Each 
action that an object can carry out is represented by 
a method, which is a procedure, usually written as 
a KAL program function. Furthermore, KappaPC 
facilitates the characteristic object-oriented process 
of method activation by programmatically sending 
and receiving messages. When an object receives a 
message that corresponds to one of its methods that 
method is activated and the object carries out 
whatever procedure is specified by the method. 
Kappa objects inherit methods in the same way 
that they inherit slots and this feature has been 
used during the study to organise the behaviour of 
the new system.

KappaPC methods provide for the object- 
oriented characteristic of polymorphism. Thus 
different Kappa objects can have their own 
individual methods with the same name as the 
methods in other objects. This then allows the 
different objects to respond in their own 
characteristic way, to the same message put out by 
the application. This facility is used in the 
prototype system to incorporate an element of 
polymorphism. Thus the application can issue a 
single instruction to commence the detailing 
process of all the partial design objects in the 
vertical subsystem. This is done when the design 
has proceeded down the design hierarchy to a 
certain level. The instruction to commence 
detailing is then passed round the design hierarchy 
at that level, using a series of messages and each 
object reacts according to its type. The user can 
create object methods via the method editor, which 
is shown in fig. 4. Methods can also be created 
programmatically using the MakeMethod function.

Figure 4. The KappaPC M ethod Editor

A method can be coded to include any KAL 
function or sequence of functions. Each method 
has three default arguments: self, theParent and 
theOwner. The value of the self variable is the 
object that receives the message and it allows 
methods to access the values of other slots in the 
same object. They can also initiate other methods 
in the same object by sending the message to self. 
Methods can perform several kinds of actions:

• Change the state of the application, generally 
by changing slot values in an object;

• Send messages, either to the same object or to 
other objects; and

• Activate other facilities of the KappaPC 
system, such as rule-based reasoning or data 
access,

If a method causes changes in an application, 
the changes are typically to slot values in the 
object that receives the message. If changes need 
to be made outside of the object that receives the 
message, then appropriate messages can be sent to 
the necessary objects.

Method inheritance acts in a similar way to 
the inheritance of slot values. It can be used 
efficiently to create and refine the behaviour of 
objects. Like slots, methods can be inherited, 
made local and edited at the class or instance 
level. If the object contains a method, any of its 
subclasses that do not contain a method of the 
same name will inherit the method unchanged. If 
a message is sent to an object to invoke a named 
method then that method will be invoked in the 
object, which receives the message, not the other 
objects in the hierarchy, which may have 
methods with the same name.

5. O b je c t -o r ie n t e d  P r o g r a m m in g

The KappaPC objects, which have been 
described above, allow the user to describe real 
world objects and support the main 
characteristics of object-oriented programming, 
which are: inheritance, encapsulation and 
polymorphism.

Inheritance is used in this project to achieve 
conceptual clarity - similar types of objects are 
grouped into subclasses, which share a common 
parent. For example, design options, which 
include Rib-moulds, Waffle-moulds and Steel- 
decks are grouped into their own distinct class 
groupings. Each of these groupings has a 
common parent class, which has the generic 
attributes for the whole hierarchy.

75



Inheritance sim plifies object creation. Thus if  provides a ‘Find/Replace U tility ’ to allow  for
a new class is to be created, which is s im ilar to local and global find and rep lace capab ilities,
an existing one, then it can be created as a F ig. 5 shows a typ ica l debugger d isp lay, 
subclass o f the ex isting  c lass. The new class
autom atically inherits its parent slots and the № Em*, ил* и*

. . .  . , , 1 ' 1 EiiuinLisirDefauHslUst Of Bar Diameter*, X, _±juser need add only the new slots, which are i
required to differentiate it from its parents. This scwaluc(FWe!;Spac^g%t^aere. uj:
fac ility  is used  in th e  Study system  d u ring  the  H|(X <= j^ce|il*Me_Di«nieta:r) Arid |X>= Mil» Accept*Me_Dîem_J
creation  o f  the  d esign  o b jec ts , w h ich  m ake up TscWaiue(FNVar:B»r_Ar*a,[з.і«в5 п «вб 7і 4 'Х ’'}<)мі; 
the search  tree  o f  d es ig n  a lte rn a tiv es . The
generic class B u ild ing  is p laced at the root of iMFNVaf;Spadna_oi_6eis < міп_дгарі«ые_аім*п<іі
this tree and the inheritance mechanism  is used se«vaiuc[FNv«f;To»*i_Afe*. ioouoooi:
to create new subclasses at each design level. ei*« ii (гыуаг^райпд с̂м.вагз j Max.AccBptabfe.sitacingj

KappaPC can support single inheritance only, S«tValui;(FHVar:S|iaciiig_Of_BBr:!, MaxJlccEptabl^Sparing];
I . ip* . ■ » j  • г  л . SctValuc(FNV*r:Total Area, |1 ÛUÛ.Û * FNV*n8ar Areef f FNVenSiso additional functional coding was performed to
. . „  . .  .  ,  ,  j  I I  Л * « * *  . A **■ a l  ✓ a  .provide ror the multiple inheritance required

during the generation of the new levels in the tree. EZ45 ' : D|VI Je b»~J<!ru! ° °  Requlred.Arca = -Б? 4СЯЗГ,1П941 5ЙЗ
M3X_AC'Ct̂ (aUlc__Spai:iiiy - 300 _

6. K a p p a  A p p l ic a t io n  L a n g u a g e  - K A L  |Max_Acc«p!ablï_Diaiiitrter - 20
Min Acccplable.Dliimeler = 1(1

KAL is a high-level application development ----------- 1----------- 1---------- i---------- 1-----------1------------
, . - . Go Slep Trace Here Abort Ilanguage, which allows users to program the
functions required to support procedural , „  . _ . _n r  Figure 5. Debugger Display During Function Trace, 
programming. During the development ot the
system used in the study procedural programming
was used extensively to program the design 7. REASONING MECHANISM
synthesis and evaluation activities. KappaPC provides facilities for rule-based

KAL can be used to manipulate application reasoni whlch anows the user to develop rule-
objects, mathematical funct.ons, strings, lists, files, basefl systems TheS£ systems represent knowledge
control blocks, windows, popup menus, input in terms of a set of ruieS5 which determine what the
forms, application graphics, interfaces, and system syst£m shou[d do Qr what conclusions the user
access. It also allows the user to write functions, should draw in different situations
methods and rules, create message passing in KappaPC the rules are represented as " i f
schemes and activate the inference engine, to (conditions) and „Леп„ (actions) statements,
complete calls to external functions, employ they are associated with a subset of facts?
graphics and animation and to facilitate data represented as a set of object and slot pairs
access' drawn from the domain knowledge in the

KAL source code can be compiled to ANSI C. gystem The KappaPC reasoning mechanism
Furthermore, a suitable С compiler can further cQnsists of a combmation of the rules and object
compile this С code into a dynamic link library ^  which afe organized int0 an inference
(DLL), which runs an average three times faster networR and a sygtem int ter> which controls
than the original interpreted KAL code. the appHcation of the rules

As well as object-oriented programming KAL Thg interpreter has two majn modes of
allows the user limited access to non-object local reasoning; agenda-controlled forward chaining
variables, which are used with Let and loop &nd al_driven backward chaining. The study
constructs and which are settable, i.e. they can be sygtem emp,oys forward chaining through Qut In
used in assignment statements. forward chain ing the facts in the system  are held

A debugger provides the user w ith a means to ід wQrking memory5 which is continuany
debug KAL source code. The user can view updated as rules are invoked. The rules represent
functions, methods and the execution stack and possjb,e actjons tQ take when predetermined
can set break points for functions and methods. eyents change thege fects jn wQrking memory
The user can also set watches on the value of Thgse actions usuaUy іпуЫуе adding Qr deleti
object slots or any other coding entity, by items from working memory.
selection. The debugger has two mo es, step- interpreter controls the application of the
over’ and ‘trace-into’ . In addition KappaPC ruleSî given the contents of working memory5 and

International Conference on Information Networks, Systems and Technologies

76



Minsk, Belarus, October 2-4, 2001

thus controls the actions taken by the system. The 
interpreter works through the rules in cyclic 
manner as follows:

• Check to find rules, which have the conditions 
satisfied;

• Select a rule, based on a predetermined 
strategy; and

• Perform the action in the action part of the 
rule, thereby modifying current working 
memory.

KappaPC has several features to enhance its 
rule-based reasoning, these include four rule- 
firing schemes: depth-first, breadth-first, best- 
first, and selective, pattern matching on objects. 
It also allows priorities to be set for conflict 
resolution, and provides a flexible explanation 
facility to explain the conclusions arrived at by 
the inference mechanism. KappaPC also 
provides features, which allow a developer to 
debug the inferencing scheme being used. These 
include, rule trace and break capabilities, slot 
trace and break capabilities and the ability to 
step through the inferencing process. These tools 
are accessed through three specialised editor 
windows in the development environment: the 
Rule Relations window, the Rule Trace window 
and the Inference Browser window

The Rule Relations window dynamically 
displays rule networks and interdependent rules. 
It displays ’’if' and "then" dependencies for 
related rules and allows browsing through the 
compiled rule network and provides interactive 
editing of rules and their relationships.

The Rule Trace window allows the user to 
specify application components to be examined 
during the inferencing process. It provides 
capabilities for active trace, where the user can 
step through inferencing one step at a time and 
can momentarily stop inferencing at pre-defmed 
states, change parameters, and then resume the 
process. The rule trace window displays the 
active rule list, agenda contents, and trace 
outputs. The system provides a choice of 
automatic or active trace, as well as an 
interactive stepper mechanism.

The Inference Browser window facilitates 
graphical debugging of the rule systems and 
allows interactive editing of rules. It shows the 
active path, and the status of slots (known or 
unknown, which are to be queried from the user, 
or which are to be deduced from rules), rules 
(active or inactive, to be expanded, rules 
pending, or fired to true or false), and goals 
(true, false, or unknown). It also provides a step

mechanism. The developer sees how the system 
arrived at its conclusions by examining its lines 
of reasoning once the reasoning process is 
complete. The Inference Browser can also be 
used to trace the source of errors in the 
application’s knowledge base. It was used in this 
project to test the rules required to satisfy 
various goals. It was found to be an extremely 
useful tool for analysing the inferencing process 
and debugging the system.

8. C o n c lu sio n

The object-oriented nature of KappaPC 
provides many benefits for developing 
knowledge based expert systems. Object- 
oriented programming allows you to associate 
behaviours with objects by storing methods in 
the objects. It provides a uniform interface to 
disparate kinds of objects with distinct 
behaviours, facilitating development and 
maintenance of an application. It provides a 
good way to represent active things and is useful 
for implementing most procedural parts of a 
KappaPC application. It can also be used when 
the procedures you want do not require the 
inferencing capability provided by rules. 
However, for certain cases it can be difficult to 
decide which is best and there are very few 
sources of reference to guide the programmer as 
to which is suitable in a given case.

KappaPC methods provide for the object- 
oriented characteristic of polymorphism. Thus 
different Kappa objects can have their own 
individual methods with the same name as the 
methods in other objects. This then allows the 
different objects to respond in their own 
characteristic way, to the same message put out 
by the application.

A limitation of KappaPC is that it supports 
only single inheritance, that is, a class can 
inherit only from one parent. For this study 
multiple inheritance was required, that is, 
inheritance from a number of parents, so 
additional programming was required to 
accommodate this.

KappaPC is quite an extensive environment 
and it has a large range of specialist debugging 
and tracing tools both for the KAL language and 
for the inferencing mechanism. To use it 
effectively a user must gain a good knowledge of 
the system and must, for example, understand 
how to integrate the object hierarchies used to 
represent domain objects with the production 
rules needed for inferencing.

77



R e f e r e n c e s  [3].Kieman, M.J., & Brown, K.E. (1996) The
Application of Knowledge Based Techniques

[1 ].Hasan, K., Ramsay, В., Ranade, S., & t 0  Subsea Acoustic Data Interpretation. IEEE 
Ozveren, C.S., (1994) An Object-oriented Expert USA
Expert System for Power System Alarm [4].Tsang, C.H.K., & Bloor, C., (1994), A Medical
Processing and Fault Identification. Proceeding g Using object-oriented
7th IEEE Electrotechnica l Conference, USA Framework. Proceeding 7th Annual IEEE

[2]. Intellicorp, (1997), Online Help KappaPC 2.4, Symposium on Computer Based  Medical 
Intellicorp Inc, Mountain View: California, USA Systems USA

International Conference on Information Networks, Systems and Technologies

78


