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ABSTRACT

A method for decomposition oi’ a system of
incompletel specified Boolean functions s
proposed that Includes coloring the graph of
orthogonality oF,(he cfecomposi\fi'on map rows. lhe
method takes into account the depen?ﬁence oF the
complrexity o%rBooflg\an functions resuH'ing from the
decomposition on the choice 01[ a variant 0% the

grap co oring.
1. Introduction

The problem of decomposition of a system of
Boolean functions takes an important place in the
logic design of discrete devices based on VLSI
circuits [1-3]. Here, we consider.this problem in
the following statement [1-7]. A system of
incompletely specified (or partial) Boolean
functions as a vector function y=fix) is given
where x=[xjx2 mm), fix)—fj(x)f2(X) .../,.,(*)), and
Y~(Y\Y—¥1)- Subsets W-{w\, w2 .. ,wr} and
Z-{zi, z2 m, 75 of the set X-{xi, X2 .., X,} of
arguments are given as well and X=WUZ. It is
necessary to represent the given system in the form
of superposition of systems of partial Boolean
functions  h(w, g(z)), with w=(w;w2..w,),
z=(ztz2... 7,).

Let a system of incompletely specified Boolean
functions y=fix) be defined by two ternary
matrices whose elements take values from the set
{0,1,-}: (/*w)-matrix U and (Ixm)-matrix \/ The
value is called undefined. In matrix U, zth row,
1<id, defines an interval ¢, of Boolean space of
arguments [1,2]. An interval represented by a
ternary vector c is a set of all Boolean vectors that
can be obtained by substitution symbols in ¢
by Gsand 1s. The function yjfj(x), 1<j<m, takes the
value 5e {0,1} for a value x* of the vector variable
x if and only if there is an interval c,, that is defined
by rth row of matrix U and contains **, and
element v, of Fis equal to 5 [1]. The columns of U
are marked with and the columns of V
are marke® with yhy2 ..,ym The specification
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domain of system y=fix) is defined by the set Df of
values of n where D/=C/UC2*...UC;,

Let the numbers ot comrgonents ot ternary,
vectors v* and y * De eqgual e say that y*
absorbs v * (y*<y *) it andconLy iifcghe valyes of all
components or r different from -, are equal’ t(r);

the values’of related components Qf y *.

Sifice vector variables w, z are formed from the
components of vector variable X, the components

Nef values Z* are the same as the related
components of X*,

éuperposit’ion of’ systems ot partial Boolean
functions h(w, g(z)) realizes a system of partial
Boolean functions y -fix) (f(x)<h(w, g(z))) if and
only if z*ADg and fix*)<h(w*, g(z*)) for any
x*eDf.

jn this paper we consider the following
problem of decomposition.

Given a system of partial Boolean functions
y~/AV) and sets W Z where W\IZ=X find a
superposition h(w, g(z))=h(w, u) of systems of
partial Boolean functions realizing f the sum of
the components of w and n (or the number of
Boolean arguments of h) being minimum or close
to minimum. The systems h and ¢ should be
“good” for minimization, i.e. the numbers of
different terms in their minimal systems of
disjunctive normal forms should be as small as
possible,

2. TECHNIQUE OF DECOMPOSITION

Let subsets W>Z o f” be given where WOZ=X
We construct table D whose rows correspond to
different values w* of the vector variable w that are
parts of x*"Df. The columns of D correspond to
different values z* of the vector variable z that are

Parts of x*¢eDJ For eterY x*eDfi the valuefix*) is

entry °f the table D at the row corresponding tc
w* and at the column corresponding to z*. If nc
Action of the system fix) is specified for some

value °f * e vef °r ™r|~ le * the corresponding
entry of Dis *- . The table D may be re?arded as

the decomposition map introduced m [4,5] and
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generalized for a system of partial Boolean
functions. The table D defines the system of partial
Boolean functions that realizes the system [*).

For example, let the system of Boolean
functions be given by the following matrices,
where Xx={xh x2 X3, x4, xs), y=(yi, y2).

i M oxj M & Y1 Wi
0 0 10 1 0 1
oil - - 11
1 " 0 0 1 "0
1 1 1 0 - " 0 1
0O - 0 1 00
0O 0 111 10
1 0 1 1 -1
Assume that W={xt,x2 x3}, Z={x3 x4 x5),

w=(xix2x3), z={x3x4x5). The corresponding table
D is shown by tabl. 1.

Table 1. Decomposition map

Xj X4 _
X\ x)x\ 101 "100 111 110 o001 Oil 010
001 01 - 10
Oil 11 11 1 1 - - -
100 -1
110 ~ " - -1 -1
w Q Q@ _ -]
000 00 00

The table D, as a decomposition map, defines a
given function fix) in the form of superposition
h(w, g(z)). The minimization of the number of
Boolean arguments of the function h is expressed
by the minimization of the number of components
of the vector u=g(z). This problem is reduced to
coloring a graph [2, 8].

To show this we regard each column of D as a
ternary vector divided into sections where every
section is a corresponding value of the vector
variable y. We define the orthogonality relation
between columns of table D as the orthogonality
relation between ternary vectors defined in [1].
Two vectors of the same dimension a=(a, a2... a,,)
ind b-(btb2.. b,) are orthogonal if there is
={1,2, ,n} such that both a, and b, aren t
-nd a,=bl . We call the values w* and z* the codes
:f corresponding row and column.

In [1] the intersection operation is defined on
-.atually non-orthogonal ternary vectors. The
result of intersection of non-orthogonal ternary
eectors is a vector whose i-th component has the
ealue 5e{0,1} if the i-th component of any of
~e vectors taking part in the operation has this

eilue. If both i-th components ofthat vectors are
.-defined the i-th component of the resulting
ector is undefined. Substitution of columns ot
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D by their intersection (merging columns)
reduces their number. Every column of the new
table D is assigned with a set of vectors z* that
were assigned to the columns being merged to
the mentioned one. We specify the function g(z)
to have the same value on all vectors assigned to
One column.

Let us consider a variant of merging columns

of the table D resulting in that each column
corresponds to some set of values of z on which
tbe funct’on S(z) has the same value. The number
°f different values of g(z) is equal to the number
of columns of D. Evidently, it is minimum if we
have managed to get the minimum number of

columns in their merging. It can be done having
obtained the minimum coloring of the vertices of
the graph of column orthogonality. If the
minimum coloring has K colors then the number
of components of the vector function g(z) is
flog2A] where \a \is the closest integer which
isn’t Ipss then n

T° obtain the superposition h(w, g(z’)’) we
assign binary codes of minimal length to
columns of table D. Assume that the code wun*
assigned to i-th column of D is a value of a
vector variable u=g(z) at all values of z assigned
to this column. The complexity of the system of

functions g(z) expressed by the number of
different terms in their DNFs depends to a

considerable extent on the choice of coloring of
graph of column orthogonality of D. We
suggest the heuristic method for coloring the
graph g of column orthogonality of D that is
described below

introduce the integer function w(y,, v7/) on

the pairs of vertices of G. This function is of the

form
w(yb Vj)=w (v,, Vj)--w ’(v;, V7) ()
where w*Xvjv) is the Hamming’'s distance

between the codes of the columns corresponding
to vertices v, and y,, w ”(v,, v,) is the number of
the components of the same name with the same
value 1 in the columns corresponding to vertices
v, and V.

Two non-adjacent vertices v, and v, of graph

G are desirable to be colored in the same color if
the value w(v,, v7) at these vertices is small. In
other words, the less value of w(v,, v7), the more
desirable for v,, and v, to have the same color.
We suggest the following algorithm for
coloring the vertices of graph G.

pjncj a maxima] complete subgraph in G and
color al] vertices of it in different

j
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colors. The number of colors is equal to the
number of vertices in the subgraph.

For every uncolored vertex v, define the set Bv
of colors that it may have. Ifthere is a vertex u
for which Bu is empty, introduce a new color
and put it to vertex u, then go to 2. Otherwise,
go to3.

Choose a vertex v from uncolored ones for
which Bv has the minimal size. If there are
several such vertices, then for every such a
vertex v and color ¢ from Bv calculate
Z Vvt(v, uc) where the sum is taken over vertices
of color ¢. Choose the vertex v and the color ¢
for which this sum is minimal, and put color ¢
fov.

Repeat ,sfc\eps 2 and 3 until all the vertices
becqme colored.

To encode. the colors we define the function w
on the set of the pairs of the colors as

Vihj)= ~w{u,v)I(\c, \-\fj ))
aec, e
where ¢, is the set of vertices having color i. The
main strategy in encoding colors is: the less value
ofi f o r iandj, the more desirable for i and /
to be closer by Hamming’s distance.

To keep this strategy one may use the technique
similar to that of [9] called “assembling a Boolean
hypercube”.

Let C be a set of colors of the vertices of the
column orthogonality graph G and be a real-
valued function specified on the set of pairs of
colors belonging to C. At the start of the process,
the vertices of the hypercube are the vertices of an
empty graph (without edges) and related to those
colors.

The input data for constructing the k-
dimensional hypercube are the values of v\i(i,j) and
the number of colors y of the vertices of G. Ify is
not an integer power of two, it should be increased
to 2kwhere &=Tlogyy], and virtual colors should be
introduced respectively. It is regarded that \(i,]) is
maximum if one ofc¢, and ¢, is such a virtual color.

The process of constructing the Boolean
hypercube can be represented as the sequence of
K steps. At the sth step, the set of (s-1)-
dimensional hypercubes are considered. They
join into pairs, and ~-dimensional hypercube is
obtained from each pair by adding edges
properly. As far as it is possible, those vertices i
and j are chosen for being connected with an
edge, which have the smallest value of
corresponding y(i,y). For every two (s-1)-
dimensional hypercubes, the sum T\Ni(i,j) is

)
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calculated where summing is performed over all
pairs i, j of indices of vertices that can be
introduced as new edges. The variant with
minimal value of this sum is chosen.

After K steps a A:-dimensional Boolean
hypercube will be obtained. The ~-component
Boolean vectors are assigned to the vertices of
the hypercube where the neighborhood relation
between the vectors should be represented by the
edges of the hypercube.

At the first step of this process 1-dimensional
hypercubes in the form of y/2 nonadjacent edges
are composed of O-dimensional hypercubes
represented by y isolated vertices. At the last,
Ath, step an ~-dimensional hypercube s
assembled from two (&£-l)-dimensional ones by
adding 2 edges,

More details of constructing a' hypercubg are
described in [91.

3. Example

Let the system of Boolean functions be given
specified by matrices U and V above. The
decomposition map D is at tabl. 1. The adjacency
matrix of the column orthogonality graph G for

table D is as follows.

V7

0 — 0 0o Q —
0 ~0 0 0 0 W
0O 0 0 0 V
Q_0——-0__
I 2 h—

The values of function w calculated by formula
(1) are shown in tabl. 2.

The maximal complete subgraph of G is
induced by the set of vertices {v*, v§ v7}. We put
them the following colors: vj-1, ve-2, v—3. Any
other vertex of G may be colored in any color,
therefore Bv={ 1, 2, 3} for ve {W/, v2 v3 V\}.

At the first execution of step 3 of the
algorithm above the sum Xw(v, uc) has only one
term that can be taken from tabl. 2. Here we put
color 1 to vertex v,. The set B3 for vertex v3
becomes {2, 3}. tabl. 3 shows the values of
Xw(v>uc) calculated at the next iteration of step
3 of the algorithm.

After coloring vertex vz in color 1 we have
m={\/, v2 v5}, we={v6}, us={y7} and two
uncolored vertices, v3 and v\ The values of
Zw(vj, uc) for v3 don’t change. For v4 we have
yjw(v4,ui)=0. Finally we have w={vb v2 v4Vj}.
u2={v3 ve}, us={v7}.



Minsk, Belarus, October 2-4, 2001

Table 2. Values of function w{vh vj)

r— 7\ N A\ _I_ N__
r A 2 3 2— v
~4 2 I 2 v
3 2~ 1 \V)
1 2 \5
Table 3. Values of Z w(v, ug
Vertex
Color VA V- V4
1 O - 2
2 3 1 2
3 2 2

To construct the Boolean graph we introduce
a virtual color 4 and calculate the values of
function W by formula (2): i]/(1.2)=l
v]/(1,3)=2E&, i]/(2,3)=l. The codes of colors 1
and 2 must be neighbor ones. So must be the
codes of 2 and 3. If we put codes 00, 01, and 11
for colors 1, 2, and 3 respectively, we obtain two
systems of functions that are specified by the
following matrices1

*3 M *5 gi g2
L | q ]
110, 00
0 0 1 00
010 11
an(j
d X d @ 0 X
0 0 10 1 10
0 110 O 11
1" 000 0
11011 -1
0 - o0 - 00
1110 - 01

In this example the number of arguments of hi
ind h2 isn’t less than that o ff andf 2 This example
s given only to illustrate the technique for
decomposition with overlapping Wand Z

After  minimization of these
"completely specified functionswe obtain:

Ui=gi(x.3, X4, >6) -X 3Xs5;
Uu2.-g2(x3, X4, x5) =X3X5 v X 4xf,
12, %, %6 U, uif - X X6 A XiXe Yon
Yo A2, X, X8, ut, n2)—=x3 W2 vxi v U

systems
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4. CONCLUSION

The problem of decomposition of a system of
incompletely  specified Boolean  functions
doesn’t lose its importance. In this paper we
suggest a method for decomposition using
special graph coloring and color encoding
oriented to obtaining comparatively simple
systems of functions.
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