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ABSTRACT

The acyclic transmission networks (ATNSs)
consist of a number of positions (nodes) in
which multi-state elements (MEs) capable of
receiving and sending a signal are allocated.
Each network has a root position where the

signal source is located, a number of leaf
positions that can only receive a signal, and a

number of intermediate positions containing
MEs capable of transmitting the received signal
to some other nodes. The networks are arranged
in such a way that no signal leaving a node can

return to this node through any sequence of
nodes (no cycles exist). Each ME that is located

in a nonleaf node can have different states
determined by a set of nodes receiving the
signal directly from this ME. The probability of
each state is assumed to be known for each ME.
The ATN reliability is defined as the
probability that a signal from the root node is
transmitted to each leaf node.

In this paper, an algorithm for ATN reliability
evaluation is suggested. The algorithm is based

on using a universal generating function (UGF)

technique. o
It is shown that the proper distribution of

MEs with different characteristics among ATN
positions  provides the ATN reliability
enhancement. An algorithm  for optimal
allocation of multi-state elements in acyclic
transmission networks is presented. A genetic
algorithm (GA) is used as the optimization tool.

NOMENCLATURE

ATN reliability

total number of nodes in ATN

number of leaf nodes in ATN

number of MEs to be allocated at ATN

, iI-th node of ATN

set of MEs

A set of MEs allocated at ¢,

kn set of nodes receiving a signal from ME located
at ¢, when it is in state K

K, number of different states of individual ME
located at node ¢,

o<z ¢

= e
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N number of different states of group of MEs

located at node c,

K, number of different states of group of MEs
located at nodes G ¢,

p d\kprobability that a signal from d-th ME located
at c, reaches set of nodes JIK

N state probability distribution matrix for ME
random bl yector enti  set of ATN

nodes recdving a signa, directly from sl ME
iocatecj at nocje ¢

A random binary vector representing set of ATN

nodes receiving a signal directly from group of
MEs located at node ¢,
¥ random binary vector representing set of ATN

"°Nes, rece'vin« a s,gnal from ¢* throuBh a" Ihe
s ocate at
Rvalue of F, at state K (vector representing the set

N
value of V( at state K

fv tte f
vaueo (asae

g~ probability that V, is equal to Vj»
probability that V; is equal to Vju

N

»

u” z>“-functlon corresponding to ME d located at
n°de c' (rePr* nts probabilistic distribution of \)

Uj(z)  wmfunction corresponding to group of
MEs located at node c, (represents probabilistic
distribution of \-)

Uj(z)  wmfunction corresponding to group of
MEs located at nodes clr...c, (represents
probabilistic distribution of Vj)
o mfunction simplification operator
£24* composition operators over m-functions

@ function for vector composition
h(d) number of node in which ME d is allocated

2. INTRODUCTION

Acyclic transmission networks consist of a
certain number of positions (nodes) in which
multistate elements capable of receiving and/or
sending a signal are allocated. Each network has
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a root node where the signal source is located, a
number of leaf nodes that can only receive a
signal and a number of intermediate (neither root
nor leaf) nodes containing MEs capable of
transmitting the received signal to some other
nodes. The signal transmission is possible only
along links between the nodes. The networks are
arranged in such a way that no signal leaving a
node can return to this node through any
sequence of nodes (no cycles exist).

Each ME located in nonleaf node can have
different states determined by a set of nodes
receiving the signal directly from this ME. The
event that a ME is in a specific state is a random
event. The probability of this event is assumed to
be known for each ME and for every its possible
state. All the MEs in the network are assumed to
be statistically independent.

The whole network is in working condition if
a signal from the root node is transmitted to each
leaf node. Otherwise, the network fails. (Note
that it is not always necessary for a signal to
reach all the network nodes in order to provide
its propagation to the leaf ones).

An example of the ATN is a set of radio relay
stations with a transmitter allocated at root node
and a receivers allocated at leaf nodes. Each
station has retransmitters generating signals that
can reach a set of next stations. Note that the
composition of this set for each station depends
on power and availability of retransmitter
amplifiers as well as on signal propagation
conditions.

The acyclic transmission network is a
generalization of the tree-structured multi-state
systems investigated by Malinowski and Preuss
[l] and multi-state linear consecutively-
connected networks introduced by Hwang &
Yao [2] and studied by Kossow & Preuss [3] and
Zuo & Liang [4]. An algorithm for ATN
reliability evaluation was suggested by Levitin
in [5].

The problem of optimal ME allocation was
first formulated by Malinowski & Preuss in [6]
for linear consecutively-connected system. In
this problem, MEs with different characteristics
should be allocated in system nodes in such a
way that maximizes the system reliability. A
multi-start local search algorithm was suggested
for solving this problem.

This paper presents an algorithm for optimal
allocation of MEs in ATN. Simple extension of
problem formulation [6] to ATN gives the
following formulation:
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Given ATN with N-M nonleaf nodes.
Allocate D=N-M MEs in the nodes of the ATN
(allowing only one ME to be located in each
node) in a way providing the maximal system
reliability.

In many cases, even for D=N-M, greater
reliability can be achieved if some of MEs are
gathered in the same position providing
redundancy (in hot standby mode) and some
positions remain empty, than if all the MEs are
evenly distributed between all the nonleaf nodes.

In order to take into account the possibility of
reliability — improvement by uneven ME
distribution and to consider a general case in
which number of MEs is not necessary equal to
the number of nonleaf nodes, we extend the
optimal ME allocation problem as follows:

Find allocation of arbitrary number D of MEs
with given state probability distributions
(depending on MEs allocation) which maximizes
reliability of ATN with given topology.

3. Model Description

An ATN can be represented by acyclic
directed graph G=(C,E) with N nodes c,eC
(I</</V), M of which are leaf ones. The nodes are
numbered in such a way that for any arc
i,cj)&Ej>i and last M numbers are assigned to
the leaf nodes: cNMH,...,.cN (note that such
numbering is always possible in acyclic directed
graph). The existence of arc (ci,cj)eE means that
a signal can be transmitted directly from node i
to node j. One can define for each nonleaf node
c, a set of nodes A, directly following c,: eye A, if
(ci,cj)eE.

There are D available MEs with different
characteristics. Each ME has its unique number.
Multistate elements located in each nonleaf node
d (1<i<N-M) can transmit a signal to the nodes
belonging to the set A,. In each state k, these
elements transmit a signal to some subset Xik of
A, (in the case of total failure, the ME cannot
transmit a signal to any node: ktk=0). Each ME
d (1<d<D) located at c, can have K, different
states and each state k has probability pdu,k such
that pddk The states of all the MEs are
independent. One can see that for each ME d all
its possible state probability distributions
depending on its location are defined by matrix
Pd={pdalk}, 1<i<N-M, l<k<Ku

Note that one can define the same set of
possible states for each ME located at certain
node G. Indeed, if some ME n can provide
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connection from ¢, to a set of nodes \ikand ME
pi cannot provide this connection, the state
corresponding to set Xk can be defined for both
s, whilep niovandp nikU

A signal can be retransmitted by the ME
located at ¢, only if it reaches this node.

The system reliability R is defined as a

probability that a signal generated at the root
node C/reaches all the M leaf nodes Qi m¥/, ...,cw.

The ME allocation problem can be considered

as a problem of partitioning a set g of D MEs
into a collection of N-M mutually disjoint

subsets A, (\<i<N-M), i.e. such that

TTN =A 1)
R '

4/A =0, M, (2)
11 '

Each set A,, corresponding to ATN position ¢c,,
can contain from 0 to D MEs. The partition of
the set A can be represented by the vector
H={h(d),I<d<D}, where h(d) is the number of
the subset to which ME d belongs. One can
easily obtain the cardinality of each subset A as
0

IM=£i(A(rf) =0. (3)

For the given vector H one can obtain state
probability distribution of each ME d allocated
at node chd from matrix Pd as Pdndxkdk for
1<k<Kn(d).

For the given ATN topology (C,E) and for the
given state probability distributions of the MEs
Pd (\<d<D), the only factor influencing the ATN
reliability is the allocation of its elements H.
Therefore, the optimal allocation problem can be
formulated as follows.

Find vector H*
reliability R:

maximizing the ATN

H*CEP1L PD=

=arg{R(H,C,E PL....P°)->Tax}  (4)

4. ATN Reliability Estimation Based on
aUniversal Generating Function

The procedure used in this paper for network
reliability evaluation is based on the universal
generating function (also called M-functioni
tecHniue, which was introduced in TH an
which proved. to. be very efiective for reilabijity

evafuation ifferenf types of muMi-state
systems [8-14]. The wmfunction extends the

widely known ordinary moment generating
function,

4.1. U-function for Individual MEs

The UGF (m-function) of a discrete random
variable X is defined as a polynomial

u(z) ='S'qgkz x* (5)

«—

where the variable X has K Possible values and
15 the probability that * is equal to Xk

In order to represent random sets of ATN
nodes that receive a signal, we modify the UGF
replacing the random value X with the
random binary vector F={v(l)...v(N)} such that

v(/) corresponds to node c,.
Consider a multistate element d located at

position ¢, In each state Kk (\<k<K)), the ME
provides a signal transmission from ¢, to a set of
nodes XK In order to represent the set Xk we

determine vector Mkas follows

cj e
(6)

[o.

v*o ) =1t , m

The polynomial

uid{z) =€j p dxtzsk (7

represents all the possible states of the ME
located at ¢, by relating the probabilities of each
state K to the value of a random vector V
(representing set XK in this state.

Note that the absence of any ME at position c.
implies that no connections exist between ¢, and
any Other position. This means that any signal
reaching ¢, cannot be retransmitted in this node.

case>tbe corresPonding w-function takes
the form

. \'4
uio(z)=z (8) .

where vq(j)=Qfor \g<N

4.2. U-Function for Group of MEs Allocated
at the Same Position

Consider two MEs n and m allocated at thé
same position ¢,. Assume that first ME is’in state
s and second one is in state g. The probability of
this composition of states isp ais-p aig. A signal
generated by the two MEs reaches all the nodes
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belonging to set A,UA(@ This set can be
represented by vector Vis®Vlg, where the ©
operator (logical OR) for two arb.trary vectors A
and B is defined as follows:

o ifa(j) - b{j) =o,
al)®hb(j) ~1 :
[ ot erwise

(\<j<N). 9)

In order to obtain the mfunction of a subsystem
consisting oftwo MEs n and m located at the same
position G, a composition operator Q is introduced.
This operator determines the m-function for a group
of MEs using simple algebraic operations on the
individual  m-functions of the MEs. The
composition operator for a pair of MEs n and m
takes the form:

K
=Q (Vn"s 7%

y . L
ZIynINZ /o

zV)~
11

(10)

K K,

- 2-iJLtP "akP "ax
k=1 /=1

i,40K/ .

The resulting polynomial relates probabilities
of each of the possible combinations of states of
the two MEs (obtained by multiplying the

robabilities of corresponding states of each

E) with vectors representing sets of nofles

reseiving the signal m the given combination of
states
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One can see that the operator Q satisfres the
Towing conditions:

Q{ui(z), ,ut(z),ut+i(z), ,uv(z)}-
=Q{Q{ui(z), ,ut(z)}.n{ut+(z), ,uv{z)}} (11)

for arbitrary t. Therefore, it can be applied in
sequence to obtain the w-function for an arbitrary
group of MEs allocated at ¢,:

u(z)=n Wm,(2»=£°?2Y *,
deA. bIX

<i2)

'mhere Kj is a number of different states of the

croup of MEs allocated at ¢, qg”is the
probability that only the nodes belonging to the
set represented by the vector Vik receive the
signal directly from c,, One can consider the
p-oup of MEs allocated at ¢, as a single ME with
s:ate distribution (12).
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U-Function for the Entire ATN
Assume that a gignal generated by MEs
located at ~ {n gtate s reaches wMch

corresponds to vis(2)=1). If the MEs iocai\eéi at

c2 are in state g, the signal generated at c2
reaches all the nodes belonging to X2g. Therefore,
when the first group of MEs is in state 5 and the

second group is in state g, the set of nodes
receiving the signal is Kisxj'k2y. This set can be
represented by vector V, ®V,

4.3.

~ asignal generated at ¢t at some state 5 does
not reach ¢ {c2tXis which corresponds to
vti (2)=0), the group of MEs located at ¢2 cannot

retransmit the signal in any of its states and,
therefore, MEs located at cr don't affect the state
of the ATN. The set of nodes receiving the

signal remains Xis represented by the vector Vu.

tbe general case of arbitrary states of the two

grouPs °f MEs, one can use the following
function w to determine the random vector

V2 representing the set of nodes receiving the
signal from ¢j directly or through ¢2

_. Vi
V ©V

V(2)
v(2)=

RONCE)
1

To represent all the Possib’le combinations of
states of the two grgups of MEs, one has to

relate the corresponding probabilities (obtained
by multiplying probabilities of correspondijng
states of each group) with the values of the

random vector V2 in these states. For this
purpose, we introduce a composition operator 4*
over u-functions of groups of MEs located at ¢t

n°2

U2(z) = #(Ul(z),02(2)) -

K K
4 (ETi,*41;7Lz2V,)= «U»
g-i
Kl kJ .
n ~'"YiKk2™M
H A

The resulting Polynomial U2(z) represents
the Pr°babiHstic distribution ~of the possible
values of the random vector V2 corresponding
to set of nodes receiving the signal from </
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directly or through the MEs located at ¢2 The
random vector V2 can have K7 <K{?2
different values. The probability of eagh state k
of group of MEs located at cyand c2 is g2k.
Consider a random vector V, representing a

set of nodes receiving the signal directly from
¢l or through the Mbs located atc¢2 ..., ¢,. It can

easily be seen that the addition of the MEs
located at c,-i changes the set of nodes
receiving the signal in such a way that the

random vector V/4, representing this new set,
takes the form:

vV oo- Y, (r+1) —0,
y oy v(i+D=l
- 1 ,_H’ ]
Let '61'142)\ be the w-rrungtion represen/t\ing,

probabilistic distribution of V,. Since node ¢I+H
cannot receive the signal from any node ¢cmwith
m>i+1, the probability that the signal generated
at ci reaches is completely determined
by U:(z). Therefore, we can obtain a recursive
expression for the wm-function representing the
distribution of ATN states:

EW (z) =440i(z2),0 ,+l(z>)=

Y(Tqikz ~ ; £ qi+i fzvie f)

k=l f=I
Ki Kj+ Y i
IS YikYi+l f z 1’}|' -~ b
k=If=

K1

. i+1 k)
Z4|+I Kk Z
14=1

where KM <KtK M.

N-ot’e that for any ﬁi(z)\in&‘ [TME{Z\):ui-H o(zl)

(corresponding to empty position ¢ H)

Ui+1(z) =4'(0:(2),ui+1 0o(2)) - Uj(z). (17)

One can obtain the m-function representing
the distribution of the ATN states when all the
MEs are considered (or, equivalently, the
probabilistic distribution of random

vector VNM) applying the Eq. (16) in sequence
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for /=1, /=2,..., i=N-M-1 Summing probabilities
N f°r aH the states K in which
Vo {0 .=1for N-M+I<jj<N,>one obtains the
probability that the signal reaches all the leaf
nodes, which is equal to ATN reliability index.

‘44,  bimphncation ofU—Functions

Observe that when wmfunction U&2z) is
. A
obtained, the values yn(1),...,vik(i)

reﬁresenting the presence of a signal at nodes
ch....cl are not used further for determining

Um(z)fox any m>i. Indeed, when determining

UiH(z) , we need to know only the probabilities

signal reaches nodes cl+#,...,cN It does
not matter through what paths the signal reaches

these nodes. For example, if the signal reaches
¢,4 through a number of different paths
(represented by the same number of different

terms in  Uj(z)), one does not have to
distinguish these paths. The only thing one has
to know is the sum of probabilities of states in

which these paths exist, meaning that one can
collect the corresponding terms in Uj(z) by
replacing all the values VAt(l),..., vik{i) in

VeCtarS AN e f O'<z>with zeros and collecti"S
the like terms.

If in some state k vrt(i +1)=... =vft(iV)=o,
the signal cannot reach any position from ¢nl to
¢Nindependently of states of MEs located in
these positions. Therefore, this state does not
contribute to signal propagation to the leaf nodes
and the corresponding term can be removed from

the w-function U,(z).

Taking into account the above-mentioned
considerations, one can drastically simplify

polynomials Ut(z) for \<i<N-M using the
following operator cp((/;(z)) which

vik(l) ..., vik(i)
t/,(z2)(I<k<E£));

in each term of

Zeroes

On ” zeros’
collects like terms in the resulting polynomial,
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4.5. Algorithm for
Reliability

Using the UGF technique described above, one
can obtain the ATN reliability for the given set of
parameters (pda K Aan) 1<<NM, 1<k<K,, \<d<D
and the given ME allocation H applying the
following procedure, which is convenient for
numeric implementation:

', Determine vectors \Kcorresponding to sets Ak
for the positions ¢ h ...,Cnm using rule (s).

Determination of ATN

2. For each ME d located at position h(d)
determine the wfunction uhgdz) using
expression (7) with probabilities p dh{d), for

=
each state k
3. Obtain mfunctions U; (z) for each nonempty

node ¢, using expression (12) and Q operator
(E0). For empty nodes | assign
Uj(z) = ujo(z) , where ujo(z) is defined in (8).

Assign Uj(z) —Uj(z).
Apply expression

fLrJ HiQ z} 4y ({édﬂu ({i’y)'llJ H'i({i’y) for
/:1,%,..., N:M-1 ih sequence using operatbgég'
(14) and errator n?.described in the previous

Simplify polynomial UNM(z) using operator
0 and obtain the ATN reliability R as the
coetfic®nt of the Brm of > u@ ) M
which v NVj)~ 1 for all N-M-t- 1<y<A®

Note that in the general case, the resulting
rc'ynomial contains 2MI| terms. Therefore, the

> "gested method can be applied for ATNs with
-Oderate values of M.

O ptimization Technique

Finding the optimal ME allocation in ATN is
i complicated combinatorial  optimization
rroblem having (N-M)° possible solutions. An
‘\haustive examination of all these solutions is
z:i realistic even for a moderate number of
rosirions and MEs, considering reasonable time
rritations. As in  most combinatorial
:riimization problems, the quality of a given
>:jution is the only information available during
~£ search for the optimal solution. Therefore, a
leuristic search algorithm is needed which uses
zzly estimates of solution quality and which
c:es not require derivative information to
ictermine the next direction of the search.
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The recently developed family of genetic
algorithms is based on the simple principle of

evolutionary search in solution space. GAs have
~en Proven  be effectlve optimization tools for a

T ®& of, aPPhtions.  Successful
applications of GAs in reliability engineering are
reported in [9-22]

It is recognized that GAs have the theoretical
property of global convergence [23]. Despite the

"act their convergence reliability and
convergence velocity are contradictory, for most
practical, moderately sized combinatorial
problems, the proper choice of GA parameters

aH°ws solutions close enough to the optimal one
to be obtained in a short time.

5.1. Genetic Algorithm

Basic notions of GAs are originally inspired
by biological genetics. GAs operate with
"chromosomal™ representation of solutions,
where  crossover, mutation and selection
procedures are  applied. "Chromosomal"
representation requires the solution to be coded

a(:Son§’trul‘:llri]\'/tee oﬁﬂmﬂatiﬁwnglgo}mlmg ICIRRIESS
sophisticated methods to obtain a good singular
solution, the GA dgals with a set of solutions
'(population) and tends to manipulate each
solution in the simplest manner.

A brief introduction to genetic algorithms is
presented in [24]. More detailed information on
GAs can be found in Goldberg’s comprehensjye
book [25], and recent developments in GA
theory and practice can be found in books [22,
23]. The steady state version of the GA used in

PaPer was developed by Whitley [26]. As
reported in [27] this version, named GENITOR,

outperforms the basic “generational” GA. The
structure of steady state GA is as follows:

| Generate an initial population of Ns randomly

constructed solutions (strings) and evaluate
their fitness. (Unlike the “generational” GA,
the steady state GA performs the evolution
search within the same population improving
its average fitness by replacing worst solutions
with better ones),

Select two solutions randomly and produce a
new solution (offspring) using a crossover
procedure that provides inheritance of some
basic properties of the parent strings in the
offspring. The probability of selecting the
solution as a parent is proportional to the
rank of this solution. (All the solutions in the
population are ranked by increasing order of
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their fitness). Unlike the fitness-based parent
selection scheme, the rank-based scheme
reduces GA dependence on the fitness
unction structure, which is especieﬂl
important when constrained _gptimization
problems are considered &g Aliow  the
offspring to mutgte. Mutation, results in
sligh changes in the offipring st.ructurefng
maintains ~diversity @f solutions. his
rocedure avoids premature convergence i a
ocal optimum andl Facilitates lumps in the
solution space. The.positive changes in the
solution cdde created by the mutation can be
Wter Propagated throughout the popuYXtion
via Crossovers.
Decotle the offspring to fﬁain the obiective
function (fitnessf va?ues. ?I' ese values are a
measure of quality, which is used m comparing
different solutions. .
"Apply a selection proceélure that compares
the new offspring with the worst solution in
“ [ ]
the, population ar)\él selects the one that,Is
better. he better solution loins th
opulation and the yvorse one is discarded. ﬁ‘?
Gre population ,contains equivafen?gsomtions
ollowing the selection process,
redundancies are eliminated arlr\?, as a result,
the Population sizg decreases, °Otg?<£r at each
time the new soluffon has sufficien¥itness to
enter the population, i't.alters the poot of
prospective  parent sofutons and Mcreases
the average 'réness of the current popuiation.
Ihe average fitness increases monotonically
(or, in the worst case, does not vary) during
each genetic cycle (steps 2-5).
Generate new randomly  constructed
solutions to replenish the population after
repeating steps 2-5 Nrep times (or until the
population contains a single solution or
solutions with equal quality). Run the new
genetic cycle (return to step 2). In the
beginning of a new genetic cycle, the
average fitness can decrease drastically due
to inclusion of poor random solutions into
the population. These new solutions are
necessary to bring into the population new
"genetic material” which widens the search
space and, like a mutation operator, prevents
premature convergence to the local optimum.

6. Terminate the GA after Nc genetic cycles.

The final population contains the best solution
achieved. It also contains different near-optimal
solutions, which may be of interest in the
decision-making process.
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5.2. Solution and Basic GA

Procedures

Representation

~ AN

To apply the genetic algorithm to a specific
probilem, one must define a solution representation
and decoding procedure, as well as sPecific
crossover and mutation procedures,

As it was shown in sectr‘or}\z, any arbitrary £~
length vector ¢with elements h&d) belonging to
the range Q\, ) represgnts a feasible
allocation of MEs. Such vectors can represent
each one of the possible (N-M) different
solutions. The fitness of each solution is equal to
the reljgbility of ATN with allocation,
represepted by Lhercorreeponding vector H. Fo
estimate the AIN' reliability for the arbitrary
vector , H, one should apply the Procedure
presented m section 3.,

he random solution generation Procedure
provides _solution feasibility by generating
vectors. of random integer numbers within the
range [\,\N-M\. It can be seen that the r[ollowfng
crossover and mutation procedures also preserve
solution feasr‘b‘i‘lity,

Ihe crossover .operatop, for given pale
\éegtbrs I51I’, and the offspring.>vector O is

efined as %ollovv~s: first P1 is copied to O, then

?II numbers of elements beIongﬁg to the
ragment between a and b positions of the vector
P2 {whege a and b are randony, values g \<a<bxD)
are copled to the corresponding positions of O.
Ihe following examgple illustrates the crossover
9rocedure for £5=5, N-M=A:

Pi=241423
P2=\12342
0=242 343

The mutation operator moves the randomly
chosen ME to the adjacent position (if such a
position exists) by modifying a randomly chosen
element h(d) of //using rule h(d)=max{h(d)-\,\)
or ru® h{d)=min{h{d)+\,N-M) with equal
probability. The vector O in our example can take
the following form after applying the mutation
operator:

0~232 43
J
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