
Minsk, Belarus, October 2-4, 2001

User Interface Builders: Are they a Good Idea?

Begumhan Turgut, Nevin Aydin and Damla Turgut
Department of Computer Science and Engineering

The University of Texas at Arlington
P.O. Box 19015

Arlington, TX 76019-0015
Email: {bturgut, aydin, turgut}@cse.uta.edu

A bstract
This paper addresses the features of user interfaces. The
importance of a good user interface is highlighted; the advantages
and the disadvantages of using an interface along with some
representational schemes are discussed. Then we suggest the
reasons for the usage of a software tool to build a user interface.
We then compare four tools based on some of the requirements
elucidated. This paper is based on the importance of a Human
Computer Interaction.

Introduction
A computer program normally consists of two major parts:
a computational part that addresses the issues of
application development and a user interface (UI) part
[JWCK91]. The separation of the two parts into
independent entities makes application development easier.
The application developer can deal with only the issues
related to syntactic elements rather than dealing with the
semantic effects of the system.

The User Interface has been described by Myers, as
“User Interface is that part of the computer program that
handles the output to the display and the input from the
user to the program” [ВАМ96]. The user interface has been
described as a list of logical components. Each component
description is a list of condition-action pairs, where a
condition is a state inspection function and an action is a
list of state manipulation functions [JWCK91]. The studies
conducted show that 48% of the code developed is for the
purpose of producing a good user interface and writing this
part of the system constitutes 50% of the development time.
[ВАМ92]. A study commissioned by NeXTStep, an
organization that develops tools to help in the development
of user interface tools indicate that using their tool reduced
the code written by 83 % [NeXTStep]. As these studies
have shown the necessity of a software tool that helps to
develop a user interface has grown tremendously over the
years.

A user interface development tool simplifies the
coding of complex applications by providing the developer
with building blocks (or widgets) of interface components.
A user interface builder enhances usability by providing a
development team with a prototyping capability such that
proposed changes can be rapidly demonstrated to the user
to secure requirements validation and acceptance. This

aspect can decrease the turnaround time for making
changes in the Operations and Maintenance (O&M) phase,
in turn enhances maintainability.

There are four classes of people who are involved in
the development and the use of the tool to develop
applications. End users are anticipated to use the tool to
develop applications. The person who designs the user
interface is called the Designer or the User Interface
Designer. The application programmer develops the
application and finally the tool creators are the creators of
the tool that the designer uses to develop the user interface
[ВАМ95].

The user interface development tools can be broadly
categorized into two types: Interface Development Tools
(IDTs) and User Interface Management Systems (UIMSs).
IDTs are used for building the interface. UIMSs extend the
functionality of IDTs to include application development
(code generation tools) or scripting tools and allow the
developer to specify the behavior of an application with
respect to the interface. These two types of graphical user
interface (GUI) builders permit the interactive creation of
the front-end GUI using a palette of widgets, a widget
attribute specification form, a menu hierarchy (menu tree
structure), a tool bar, and a view of the form. The UIMS
adds the benefits of code generation tools, which can
greatly increase the productivity of the GUI development
staff. After the front-end is created by a UIMS, a code
generator is used to produce C/C++ code, Motif User
Interface Language (UIL) code, Java Code, Ada code or
some combination of C, Ada, and UIL [GUIB]. GUIs were
first thought of in the 1970’s at Xerox Palo Alto Research
Center; the main idea behind their reasoning was that in
future computing power would be abundant and economic.
The main inspiration behind the development of GUI was
Alan Kay’s vision of “Dynabook” [ВАМ95]. The growth
in the use of UI builders has led to an increase in the
number of tools that have been developed for this purpose.
This in turn has lead to a fall in the cost o f development of
these tools.

2. User Interface
Some of the concerns when a UI is implemented are:

219

bibl_nz
Машинописный текст
http://edoc.bseu.by

International Conference on Information Networks, Systems and Technologies

• State changes in the user interface (i.e., graphical,
textual, etc.) during the user interaction.

• Functions that can be invoked by the user from
the user interface.

• The necessary conditions for a particular function
to be invoked.

• The inputs/outputs to/from a function and the
produced results.

The state changes depend on the availability of the
components, and the look and feel of the user interface.
Since the state of the user interface depends on the calling
function, the state change also considered being the
responsibility of the designer. Hence the decision of calling
a function based on the state of the machine depends on
the function called. The two types of function calls are the
state manipulation function calls, which may change the
state of the user interface, and the state inspection function
calls, which inspect the state of the machine [JWCK91].
The various function calls and the inputs to these functions
are the responsibility of the User Interface Management
System, which inspects the application’s state, and changes
to the state of the application are notified to the system.

Some of the motivations behind using a user interface
are based on typical issues that relate to the usage of
interfaces as described below:

• Enabling functions depend on the state of the
application. Some of the functions are based on the
state of the application, (i.e., the paste function
cannot be called before the copy function has been
called and the buffer is filled up).

• Some of the functions depend on the user setting
some parameter before they can be invoked, (i.e.,
the user may have to enter the social security
number of the user before he can hit the enter
button to check the account status).

• Combining the result from multiple sources. The
result to user input could lead to access of multiple
resources. The results returned by the different
components have to be combined and presented to
the user.

• Implicit invocations are active calls being invoked
when a particular state change occurs, (i.e., the
document could be set to automatically save the file
as soon as the user changes the contents).

• Repeated invocations are also active calls. They
continue in endless loops until the user decides to
break out of the loop.

2.1 Representational Schemes
As described above, the necessity for a good user interface
is a representational scheme that completely describes the
interface. The scheme developed needs to be analyzed for
any uncertainties, violations of rules or principles and also
checked for validity of the system. A user interface must

not allow any loopholes that can be exploited by the user
and cause harm to the system. In this section, we briefly
discuss some of the more common representational
schemes that have been suggested. A detailed approach to
representational schemes of UI’s can be found at [НН89].

The state transition diagram is one of the earliest
schemes used to represent sequential transitions. Since
most o f the user interfaces are considered to be sequential,
a state transition diagram can adequately represent the
workings of a user interface. A user interface is initially in
the start state or the initial state. According to a user input,
it transits to a new state.

Some user interfaces are developed using the event
approach (also known as sequential approach), where
every stage is indicated as a window and the user decides
on the next step. In this method, the user decides the next
step in the sequence. In a non-sequential approach the user
input may not necessarily decide the next step.

In the direct manipulation interface approach, the
developer uses a package to develop the user interface. The
developer can connect action listeners and triggers.

2 .2 Requirements

In this section, we discuss the requirements that we
proposed for a good user interface based our research. The
importance of these requirements may change depending
on the area the application is being developed. The
requirements considered are as follows:

• Easy navigation through the system
• Provision of display management techniques
• Graphical representation for the information
• Provision of adequate user interaction
• Icons for main features
• Consistency
• Keep track of the current status
• Context Sensitive Help
• Reduced response time
• Minimize information on the screen

2 .3 Advantages and Disadvantages

In this section, we discuss the advantages and
disadvantages of using a user interface. The advantages are
as follows:

• Separation of syntactic and semantic elements of
the system. This allows the developer to
concentrate on the syntactic elements of the
program and develop the semantic elements
separately and combine them.

• A Uniform “Look and feel” user interface would
lead to ease the learning curve of the tool. When a
uniform look and feel is maintained to all the
interfaces in the system, the user familiarize with
the system faster.

220

Minsk, Belarus, October 2-4, 2001

Some of the disadvantages are given below:

• It is very difficult to manipulate and generate a
user interface based on direct manipulation.

• The user interface may be restricted by the
existing components. This is normally a problem
introduced by a tool, which does not support
some of the common objects used by the user
interface.

• A user interface is generally assumed to be
sequential and if there is a need for any part of the
system to execute parallel, a problem may arise.

3. User Interface Builders
The difficulty in developing useful user interfaces has

led to the innovations in developing the tools to build
them. The different components of a user interface builder
can be seen in Figure 1. The main components are the
toolkit and the windowing system. We discuss the
windowing system, the toolkit and the higher-level tools in
this paper. Interested reader(s) can refer to [BAM96] for
more detailed description of these tools.

Application

Higher L w e l T ooh

T o o lk it

W indowing System

Operating System

Figure 1. Components of the User Interface Builder
(adapted from [BAM96])

The windowing system breaks up the window into
different regions. It provides the procedures that allow the
program to paint the user interface on the screen and also
accepts input from the user and displays the result as an
output to the corresponding region on the screen. Another
part of the system called window manager allows the user
to move the regions. The manager is also responsible for
making sure that lines, text, and the icons are displayed
properly in the user interface [ВАМ96].

The layer on top of the windowing system is the
toolkit. The toolkit provides different libraries for
application development. A widget is one of the main
libraries that were used to include the libraries. The widget
libraries include menus, scrollbars, text fields and so on.
The advantage of toolkit is that most of the systems whose
applications are developed using this tool would have the
uniform look and feel; however, the toolkits are expensive
to create. Another problem is that there are practically
hundreds of procedures that have to be used to create a
procedure and it is not often very clear about the way to
use them [CAR85].

The higher level tools are placed on top of the toolkit
layer. These tools provide phases that assist in the
development of the user interface with three components:
design time component, run time component, and
validation component. The high level tools are separated
based on the specification of the designer. There are tools
based on specific languages, application frameworks, or
the design model (i.e., 0 0 based or structured design).
Some tools build prototypes and provide graphical
specification. A more detailed description is provided in
[ВАМ96].

Some application domains specify tools that are
customized for building applications that are specific to
their domain of applications. Some of the tools that are
specific to a particular domain are AutoCode and
InterMAPhics.

3.1 Requirements
The requirements that we identified in this section were
based on the needs for a particular class of user interfaces.
The requirements considered are as follows:

1. Provision of building blocks
2. Ability to drag and drop objects onto an interface
3. Ability to manipulate obj ect properties
4. Configuration of action listeners and triggers
5. Provision of component view
6. Ability to move components and update relevant

properties automatically
7. Generation of reusable and maintainable code
8. Generation of code in multiple languages
9.* Provision to view/edit code and reflect changes
10. Provision for group development
11. Provision for portability of the user interface

One of the needs for a user interface builder would be
the availability of building blocks. The various building
blocks that are available are widgets, canvas, panels, etc.
The ability to drag and drop objects and building blocks
onto the interface is considered important because the user
can then drag and drop the objects that need to be on the
user interface directly. As mentioned later, the ability to
move them around the interface is also another of the
important properties. The user interface builder has to
allow the user see the various components to build an
interface. If the user choose to add a particular object, it
must be allowed to change the various properties of that
object such as width, height, x-position, у-position etc.,
either manually or by choosing the property window for
that item and making the appropriate changes.

Another important feature that must be supported by
the user interface builder is to have means to automatically
add action listeners and triggers to the various items, (i.e.,
detecting single click or double click on a button). This
property is considered as essential. The user interface
providing a good navigation facility and the availability of

2 2 1

International Conference on Information Networks, Systems and Technologies

icons for application development is based on detecting
some kind of action listener or trigger.

As mentioned earlier, one of the most important
reasons for developing tools to build user interface is to
reduce the amount of code to be written. It must be ensured
that the code developed by a tool is easy to understand and
must follow coding standards. The code generated is
important such that any changes can be successfully
incorporated in the system.

With the advances in technology, programming
languages are being developed to support applications in
different domains. Since the programming languages are
becoming more application domain dependent, the user
interface should be able to generate code in multiple
languages.

The feature of providing different views of the user
interface would allow the user to view the code. The user
would be able to manually change the user interface and
the changes would be reflected back on the user interface
in the other view.

Another essential feature of a user interface is
portability. The behavior of the UI must not undergo and
detrimental changes once it has been ported to the other
system.

3.2 Effects of the User Interface Builders
One of the requirements for a user interface indicates

the need for a graphical representation, which is connected
to the availability of the objects for building the interface.
Other features included are a good display management
and easy navigation through the system. The tool must
therefore allow the user to use menus, icons and lists.
These features are hence driven by the availability of the
building blocks available in the tool.

The features of navigation of a system and
maintaining consistency in the system (i.e., the cut works
the same way in all the interfaces etc.) are dependent on
recognizing the action listeners and the triggers correctly.

Providing information about the status of the system
and good display management capabilities are again
dependent on the items that are available for building
components that can access the status information. The
display management depends on the properties of an item
that can be manipulated by the user dynamically. This is to
ensure that there is a view of the item and a view to
manipulate the properties of that particular item.

Minimizing the response time depends on many
factors as the user interface may have to access many
system resources that may take time. This issues can be
addressed by the user interface builder by providing good
interfaces for items such as buttons and making sure the
action listeners attached to them are sensitive.

Minimizing the information on the screen and making
sure the correct information gets written to the correct
region on the screen are some of the factors that must be
addressed in the design phase of the system.

4. Evaluation of User Interface Builders
In this section, we first present the features of the tools
considered which are Semantic Cafe, GIPSY, Builder
Xcessory and SpecTcl, and summarize the evaluation of
these tools according to the requirements of a user
interface builder that we have identified in Section 3.1.

4.1 Features of the Tools Evaluated
Some of the main features of these tools considered are
presented below.

Semantic Cafe: Some of the features available in semantic
cafe are: [SC]

• Provides components for database connectivity.
• Provides wizards for action listeners.
• Support for Java swing components.
• The help features were very good.
• The code generated was well documented and

easy to maintain.
• Changes made to the code were reflected back in

the UI.
• Windows to change the component properties.
• Window to view and edit the code generated.

BuMer Хсежогу

Panels aruiCanvas

Provides drag and drop
facility
Provides « separate view
to manipulate the item
properties in a separate
winiow.
Provides wizards to add
action listenars
Provides component view
in a $ eparate window
Easy to more components
a ra in i
Generates well
documented code.

Generate* code in Java

Coda canbe viewed in a
separate window and
change; nude a n
reflected in the UI.

Not Kwswn

Java files ire portable

Widgets and layouts

Provides drag awl drop
facility’
Provides a separate view
to manipulate the item
pioparties in a separate
window

Not Known

Fiovides component vieiw
in a s e j»raie window

NotKnown

Generates Tel Scripts

Support for group
development available
Not Krown

Provides motifwidgets,
panels and canvas
Provides drag and drop
facility
Provides a separate view
to manipulate the item
properties in a separate
winiow

Not Known

Provides consonant view
in a separate winiow

No t Krown

Generates Tel Scripts

Provides ibw w ser to
view and edit the code.

Sbcclel

Not Krown

Not Known

Provides widgets

Provides drag aid dx^
facility

Provide? a restricted k z j s
to change the object
properties.

Not Provided

Provides conportm g w
a separate window
Restricted b y the vndgc-
siae.

Code not well doc г * » т с

Generates code ir. J*<*. I»
C++, HTML, PERL

Facility to view the с о »

Not Known

Java files aie poitaJLe

Table 1. Evaluation of Tools
*The numbers 1-11 correspond to the requirements presented in
section 3.1.

GIPSY: GIPSY is a tool that was developed to help build
UI’s for large control systems. GIPSY provides some of
the features like: [GIPSY]

• Provides tools for creation and manipulation of
objects.

• Provides windows and views of the various itemf
and their properties.

• Generates Tel scripts.
• Saves the files in separate directories.
• Runs on Windows, UNIX, Solaris, etc.

222

Minsk, Belarus, October 2-4, 2001

• Does not provide help for action listeners and
triggers

Builder Xcessory: This a tool provided to generate UI’s, it
generates Tel scripts. Some of the supported features are:
[BX]

• Provides support for Java swing components.
• Supports different views.
• Runs on UNIX. Irix, Solaris and so forth.
• Provides good help features.
• Does not provide help to add action listeners and

triggers.

SpecTcl: Some of the features that are available in
SpecTcl are: [SPT]

• Runs on Windows.
• Provides widgets that are easy to handle.
• Does not provide much help to add action

listeners.
• Number of items that can be used is limited.
• Does not provide adequate help files.
• Code generated was not adequately commented.

4.2 Evaluation of selected tools.
The four tools that we selected to be evaluated in this paper
were Semantic Cafe by Semantic Inc, GYPSY a UI Builder
for control systems, Builder Xcessory a UI builder and
SpecTcl a UI Builder that supports many languages.

We evaluated the tools based on the requirements
identified in section 3.1. The evaluation a criterion of the
tools was to try and build a UI and make modifications to
the code generated. Two of the tools GIPSY and Builder
Xcessory could not be evaluated in this manner as the
system requirements could not be met.

Table 1 gives a brief description of the features of the
four tools selected for evaluation. The property with the
highest importance was the feature of the tool to provide
means to drag and drop items onto some building block. It
was seen that all the four tools supported this feature.

Another important feature that was required was the
ability to provide wizards to add action listeners and
triggers. It was seen that only Semantic Cafe provided that
feature. All the tools provided features to edit code and
move the items around the interface. All the tools also
provided feature to edit the property of the items.

The code generated by Semantic Cafe was found to be
well documented and easily maintainable. Gipsy and
Builder Xcessory were not tested on the code because of
system requirement conflicts.

5. Conclusions and Future Work
In this paper we presented some of the motivations behind
using a user interface for application development. Studies

have indicated that the Human Computer Interaction factor
is very essential. The usage of a UI helps increase the
Human Computer Interaction by providing the user with
visual knowledge of the data interaction.

We provided the requirements of a good user interface
and the features that a user interface builder tool must
incorporate. We discussed the importance of each factor
and identify the best tool for use. We concluded that for
our application domain the tool that met most of the
requirements for this class of user interfaces was Semantic
Cafe.

The area of user interface builders is rapidly
expanding with the development of classes of
programming languages to aid different classes of
problems. Hence there is a need to support multiple
languages in a tool. In distributed computing, applications
are development as separate modules and these modules
are integrated later on. Future tools must therefore provide
means to support distributed development and integration.
Some of the new multimedia components also need to be
incorporated in a user interface.

References
[BX] Builder Xcessory available at:
http://www.ics.com/

[GIPSY] GIPSY available at:
http://www.prs.de/int/products/gipsv/g4short.html

[GUIB] User Interface Builders Available at:
http://www.ukv.edu/-gbenoit/637/GUIB.html

[SC] Semantic Cafe available at:
http://www.svmantec.com/product/

[SPT] SpecTcl is available at:
http://www.interwoven.com/companv/features/aiuba/

[BAM96] Brad A. Myers 1996. UIMs, Toolkits, Interface
Builders
[BAM95] Brad A. Myers 1995, User Interface Software
Tools. ACM Transactions on Computer Human
Interaction. Vol. 2, no 1, March 1995.

[BAM92] Brad A Myers and Mary Beth Rosson. Survey
on User Interface Programming. In Human Factors in
Computing Systems. Pages 195-202. Proceedings
SIGCHF92, Monterey, С A, May 1992.

[CAR85] Luca Cardellli and Rob Pike. Squeak: A
Language for Communicating with Mice. In Computer
Graphics, pages 199-204. Proceedings SIGGRAPH’85,
San Francisco, CA, July 1985.

[JWCK91] J.W.C. Koom. Connecting Semantic Tools to
the Syntax-Directed User-Interface.

223

http://www.ics.com/
http://www.prs.de/int/products/gipsv/g4short.html
http://www.ukv.edu/-gbenoit/637/GUIB.html
http://www.svmantec.com/product/
http://www.interwoven.com/companv/features/aiuba/

International Conference on Information Networks, Systems and Technologies

[HH89] H.R. Hartson and D. Hix. Human-Computer
Interface development: Concepts and systems for its
management. ACM Computing surveys, 21(1), 1989.

[NeXTStep] Booz Allen and Hamilton Inc. NeXTStep vs.
Other Development Environments: Comparative Study.
1992. Report available from NeXT Computer, Inc.

[TBNM] Tilmann Bruckhaus, Nazim H Mahavji, McGill
University. Ingrid Janssen and John Henshaw, IBM
Canada. The Impact of Tools on Software Productivity.

224

