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A bstr a ct

For neural networks with kernel organization 
the method of topology construction based on 
data structural characteristics is offered. 
Algorithm of topological learning is shown on an 
example of kernel neural network with a regular 
structure. The work is maintained by the grant of 
РФФИ 00-01-00670a.

1. In tr o d u c tio n

Neural networks with kernel organization [1] 
are a structured variant of the multilayer 
perceptrons. Because of connection restrictions 
in kernel neural networks it is possible to receive 
a high velocity of data processing, and 
possibilities of broad variation of its structure 
allow to ensure adaptation networks to a 
structure of data. The necessity in similar 
networks arises in systems of real time for want 
of large volumes of a treated information. On 
fig. 1 a regular structural model of kernel neural 
network [2] is shown.

(2,2)

Figure 1. Structural model o f neural network

On the structural model graph each top 
corresponds to a neural kernel, which can be 
considered as a single-layer perceptron of small 
dimensionality.

In the given example all neural kernels within 
of a layer are structural similar. Structure 
performance of a neural kernel is set by a pair of 
numbers (p,g)9 where p- is dimensionality of 
receptive field of the kernel, and g- is number of 
its neurons (axons). It is postulated that neural 
kernel receptive fields are not intersected, and 
interkernel connections are injective [1].

Weight ry of an arc is equal to rank of the 
interkernel connection operator. For the given 
example all arcs have of weight equaled to unit. 
On fig. 2 the topological image of the neural 
network is shown as a set of topological 
matrixes. Each matrix represents the template of 
a layer synaptic card, where the nonzero 
elements are marked by a numeral «1». In the 
topological matrix a line number corresponds to 
a receptor number, and a column number 
corresponds to a neuron number. The given 
image unequivocally corresponds to know7n 
neural network graphic image (where tops are 
formal neurons), but it is more compact. For the 
same* structural model it is possible to construct 
a set of various topologies, which we shall name 
as topological realizations.
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Figure 2. Topology realization o f  neural network

If the choice of topological realization is carried 
out because of learning data, than this operation 
can be treated as topological learning of neural 
networks.

2. A l g o r it h m  of  T o po lo g y  L ear ning

A neural network topology can be constructed 
by means of setting linear orders for receptors 
and axons in each network layer. For example, in
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neural layer A it is possible to assign a serial 
number for each receptor i f  е (0,152Д ?Р -1), and 
for each axon a serial number VAe(0,1,2,K,G-1), 
where P,G are accordingly number of receptors 
and number of neurons in the layer. In turn for 
each neural kernel A-t with number of receptors 
equals p  and number of neurons equals g  it is 
possible to define local serial numbers

uAj €(0,1 ,2,к, p - 1) and vA. e  (0,1,2,K, g -1)

Next pair of numerical maps

U  ^ ^Af ^ntd V  —^ A p

is named as neural kernel topology and 
determinated one to one correspondence between 
global and local serial numbers. It is convenient 
these maps to represent by following tables:

a A,

MA,

0

V6
0

v
f~ A

U  г  
l

VXA
1

U P- 1 
p - 1.

v A , л v g - 1
5 - 1 .

In kernel networks receptive fields are not 
intersected, therefore it will be the following:

° аП ° л г 0> РаГ ^ а г 0

for i^j. An interlayer transition installs mutual 
dependence between axon topology of a preceding 
layer and receptor topology of a next layer, the 
algorithm of construction of dependent topology is 
indicated in articles [2,3].

Topological learning is connected only with a 
choice of terminal fields topology of a neural 
network ( topology of input receptive field and 
topology of output axon field), the topology of the 
latent layers does not influence on the algorithm of 
data processing and can be selected to a certain 
extent arbitrary'.

Structure of a neural network sets a hierarchy of 
the equivalent relations in terminal fields. Let's 
consider a principle of their formation.

Let В is a top (kernel) of some layer of a 
structural model. Let's name as afferent of the 
kernel В (designated further as Afr(B)) subset of 
input layer neural kernels connected by arcs with 
the top B. In a similar way subset of neural 
kernels of final layer connected by arcs with the 
top B, let's name as efferent of the top and we 
shall designate Efr(B). We shall name afferent 
and efferent also as terminal projections of the 
top. Let's limit our research to dense structures,

for which the terminal projections of tops of 
identical neural layer either are not intersected or 
coincide. Thus, the terminal projections will 
derivate to partition of sets of terminal layers 
tops in not intersected classes. Tabl. 1 represents 
example of the terminal projections for structural 
model shown on fig. 1.

Table 1. Terminal projections for layer tops
Layer Afferents Efferents

A {Ao}{A,}{A2} 
. {A3}{A4}{A5}

{C0C,C2C3}

В { A0 A i A2} { A3A4A5} {CnC,HC,C,}
С {Ao A1A2A3 Ад A5} {CoHQHC.HC,}

It is visible from the table, that the terminal 
projections of neural kernels for all layers are 
enclosed and derivate a hierarchy of equivalence.

The equivalence of tops of a structural model 
induce equivalence in topology of terminal layers. 
In tabl. 2 there are the compositions of partitions of 
indication space, defining dimensionalities of 
equivalent topological classes.

Table 2. Terminal projections compositions

Layer Afferent
compositions

Efferent
compositions

A (2,2,2,2,2,2) (8)
•B (6,6) (4,4)
С (12) (2,2,2,2)

It is clear, that a neural network in a 
maximum degree will realize its potential to 
learning, when in each topological class includes 
independent indications. If some integrated 
criterion of indications independence is 
determined, then the purpose of topological 
learning it is possible to formulate as search of 
such topology of terminal layers for which the 
criterion achieves an extremum.

The integrated criterion can be constructed as 
the sum of valuations of a degree of indications 
independence on all classes of topological 
equivalence. Let's assume, that we know how to 
execute an estimation of the mutual indications 
independence (one from possible versions of 
such estimation is considered in article [4]). 
Let's show a principle of construction of 
algorithm of topological learning on next 
example.

Let learning set is given by the data table 
[X,Y]. Each table line corresponds to a learning 
example, and columns X  and Y form indication 
space for an input and output of a neural 
network. The algorithm represents a step by step 
procedure, the number of steps is determined by
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depth of a hierarchical enclosure of topological 
equivalence. The afferent and efferent topologies 
are constructed independently. Let's for example 
the algorithm for afferent topology will be 
constructed.

From tabl. 1, 2 it follows, that the algorithm 
will consist of two steps. A composition of 
partitions for a layer В is equal (6,6), therefore 
with a specific degree of exactitude on the set of 
indications X  we cover two groups of independent 
columns (we have six columns in each group). 
Let's assume, that the columns under numbers 
have been settled down as follows

7o={0,5,1,4,2,3} 7 /= {9 ,8 ,6 ,7 ,1 0 ,l l}

From tabl. 1 it is visible, that the subsets of 
columns are covered by afferents:

{.Aq,A\,A2} {Аз,А4,А$},

inducing topological equivalence with the 
composition (2,2,2). Therefore on the second step 
in each subset of indications T{jT\ we cover three 
groups of independent indications (two indications 
in group). Let's assume, that the following partition 
is obtained:

Г о = { { 0 , 1 } , { 2 , 4 } , { 3 , 5 } } ,

7V = {{9 ,8},{6 ,10},{7 ,11}}.

Comparing outcomes with numbers covering 
afferent sets, it is possible immediately to make out 
topological maps:

The topology of the neural network after topology 
learning is shown on fig 3.
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In a similar way algorithm is executed for 
indications space Y. Let's assume, that the columns 
under numbers have been settled down as follows

Го={0,1,2,3}

for layer В and

7 о = { { 0 , 3 } , { 1 , 2 } }

^ = { 4 , 5 , 6 , 7 }

7V={{5,6},{4,7}}

for layer C. Comparing outcomes with numbers 
covering efferent sets, it is possible immediately to 
make out topological maps:
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Figure 3. Realization o f  topology learned neural 
network

3. C o n c lu sio n

So as neural kernels in the afferents are not 
ordered, the plurality of possible topological 
tunings is supposed, anyone from them can be 
accepted as an outcome of topological learning. 
In deneral kernel networks the equivalence 
classes can be derivated as transitive closure on 
tolerance classes.
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