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ABSTRACT

We give three steps in the direction of shifting
probability from a descriptive tool of unpredictable
svents to a means for understanding them. At a
very elementary level we state an operational defi-
nition of probability based solely on symmetry as-
sumptions about observed data. This definition con-
verges, however, on the Komogorov one within a spe-
3iai large number law that represents a first way of
twisting features observed in the data with proper-
ties expected in subsequent observations. Within
this probability meaning we fix a general sampling
mechanism to generate random variables and extend
aur twisting device to computing probability distri-
butions on population properties on the basis of the
likelihood of the observed features. Here the ran-
iomness core translates from the above symmetry
assumptions into a generator of unitary uniform ran-
dom variables. The function mapping from these el-
imentary to our more complex variables is exactly
the object of our inference. Using this framework
we revisit the basic linear regression problem; at the
same time, however, we are capable of appreciating
:onfidence intervals in the case of Gumbel or similar
assumptions about the distribution law of measure-
ment errors. At the other complexity extreme, we
also give some initial directions for designing efficient
[earning algorithms on neural networks. Aiming to
discover suitable features (which are classically de-
fined as sufficient statistics), we refer directly to the
notion of Kolmogorov complexity and coding theo-
rem in particular. This is to connect the features to
the inner structure of the observed data in terms of
their concise codes. Thus we are able to shed some
light on the current problem ot splitting the learn-

g task suitgbly into g subsymbolic part p(ir,fomed
or instance by a neural network and'a symbolic one
done with symbolic models possibly complexer than
but as clearly defined as the mentioned reg&ression
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the presentation of a sample XM = (A'i,..., Xm) is
m

usually derived counting the number k = ~ Xr of

i=i
I’sin the observed sample and then setting p= fc/m.
An alternative way for appreciating it can be found
by considering that p, referring to the probability
that the next observed bit Xm+x will assume the
value 1, can be found through analysing the fact
“or such Xm+i we would observe exactly Kk + 1
ones within a m + 1 sized sample. Assuming that
the sequencing of zeroes and ones in the sample is
inessential to the observed phenomenon, we appre-
ciate pi = P[Am+i = 1] as the ratio between the
number of those permutations of the sampled values
having the last element equal to one and the number
permutations. Namely

N _mKk+1) _ fe+1
(m + 1)! m+1

Analogously, we appreciate p0 = P[Am+l = (]
through

m —k 41
m+1

Ro _ ral(m —k + 1) _
(m + 1)!

Note that p0 + pi = that is, the estimated
probabilities do not sum up to 1. this is due to the
fact that they refer to different probability spaces,
To put this idea in a more rigorous form, first we
introduce an incremental definition for the sample

space:

N
Definition-1.1. lhe symmgltric sample Space for
a statistical experinkent proviamgq a sapplg Xm ~

\View? ) "pairline %) Ypde
* s the setof aU the allo'te(i Permutations of

the m-tuplet (Xx,..., Xm 1;
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of the possible ones. Given Xm as a sequence of in-
dependent bits (i.e. all permutations are allowed),
in this framework the above alternative estimation
of probability that the next observed bit will as-
sume the value 1 has its natural environment in the
probability space (Qm+"£8rn+i,P), where M+l is
the set of all the permutations of the (m + I)-tuplet
(Xi,..., Xrn, 1), while SSm+\ and P are defined, as
above described, over ™n+1.

Analogously, the probability that {he next ob-
served ‘Bit will assume the value O has to be calcu-
lated I the measurable s0ate (C10.... ... WHETE
now i+, is the set of all t permu‘tatlons oi the
(m + Muplet @f ........ X

More in general, the probability that K of the
following M bits will assume the value 1 will be es-
timated through

(7)(K)  \ekK) ("I~k k~K)
P(K-Mkm) — M+m\ ~ (m+M\ w
VKK / vm)

computed in the space (MT+m, Sém+m, P)> where
—T~M is the set of all the permutations of the (m +
-V/)-tuplet ( X\, Xm, Xm+l = 1,... XT+K ~
1L.XT+k+i =0..., XT+Mm = 0).

The links between this inference of the empiri-
cal probability and the Kolmogorov one [17] arise
asymptotically:

« When m — o0, the Kolmogorov sample space
is the set of all possible values which can be

assumed by the elements of the strings which
constitute our sample space.

e When m —»00. the two definitions of esti-
mated and appreciated probability converge to
the same value

e When M,K —»00, P(K,M,k,m) = P(k,m,M,K)
tends to the Binomial distribution law
P(k:mK/M) with the sample size and the
asymptotic |’s frequency in the population for
parameters.

To appreciate the relationship between the two def-
mitions for small sample and small population (as
usual we denote by this term the subsequent M bits)
*'e generated a variety of pairs (sample, population)
from a Bernoulli variable with p ranging from 0 to
I under the constraint of both k+ K and m + M
as in (1) being constant. In Figure 1 ,we see that,
as expectable, probabilities appreciated through (1)
go around, but do not coincide with those classically
estimated through frequency. The reasons why we

2 3 4 5 S
Figure 1. Relationship between appreciated
and estimated pro’bab'llity in 60 families QU

(sample populatllon) eackh obtalned by §am-
phng from a.Bepnoulli varlgt{zle ‘Where , Tises

FEQUaPeP) LWL 3853001 Wi refegsnEgofe

zontal axis: K, vertical axis: both frequencies
(bullets) and joined values of pm,k (line),

prefer this new inferential way of finding the empir-
ical probability are the following:

« We don’t need to suppose the existence of an
intrinsical probability, but we can perform our
inferential method only on the basis of the ob-

served data;

. ™ makes sense also for small size samples;

e future and past play the same role because the
above defined space is made of the global strings
of data,

2 SECOND STEP

The typical inference framework is met when

M —oc and m is small. In this case the object of our
inference is a (possibly infinite) string of data X that
we partition in a prefix which we assume to be known
at the current time (and therefore call sample), and
an infinite suffix of unknown data which concerns the
future that we call population (see Figure 2). All
these data share the feature of being independent
observations of a same phenomenon. Therefore, in
the limit of the convergence of the probability to the
target of large number law, without loss of general-
ity we assume these data as the output of a same
function g# having input from a set of independent
random variables U uniformly distributed in the uni-
tary interval - effectively., the most essential source
of randomness2.

Such y_qv ;ahvavs exists by 'the robablllt integral
transformation theorem [12]. By de ault capital letters

wjn denote random variables and small letters their cor-
responding realizations.
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sample population

Figure 2. Sample and population of random bits.

We will refer to ~ = (U,g$) as a sampling
mechanism and to g$ as an explaining function, and
this function is precisely the object of our inference.
Let us consider, for instance, the sample mechanism
JC = (U,gp), where

J1 ifun<p
9pvul - SQ otherwise

explains sample and population distributed accord-
ing to a Bernoulli law of mean p like in Figure 2. As
shown in Figure 3. for a given sequence of U's we ob-
tain different binary strings depending on the height
of the threshold line corresponding to p. Thus it is
easy to desume the following implication chain

(Kp >K) < (p<p) <(K$>k+1) (3)
and the consequent bound on the probability

P[KF>K\>P[p<p\>P[Kp >k + ]] (4)

which characterizes the cumulative djstribution rune-
tion (c.d.f.) Fp of the parameter p. in our statistical
framework indeed, the unknown p is 3 random vari-
ablein 0,1 representing the asymptotic frequenﬁy 0
1 i the_populations that are compatible, as a tunc-
tion of U suffix of the sample, wjth the number k ot
actually observed 1. I—'|ere ,& otes. he random
variable counting the number ofis i the sarppl‘e i
the threshold m the explainin flinction switches to
p-for the same reafizations o ﬁj

Note the asymmetry in the implications. It de-

rives from the fact that:

raising the threshold parameter in gp cannot de-
crease the number of 1 m the observed sample,
AU

1U.X

Bl Keee — — > »» N

p i L (S

0l I (1 10*-004...0 . ' m_

m

Figure 3. Generating a Bernoullian sample.
Horizontal axis: index of the U realizations;
vertical axis: both U (lines) and X (bullets)

values. The threshold line p realizes a map-
pjng from jj t0 % through (2).

Twisting sample with population properties is
our approach to statistical inference, which we call
algorithmic inference. Its general framework is de-
picted in Figure 4. For any sampling mechanism, we
have on the one hand the world of hypotheses about

Sample Population
property n = - ! property I
N
world of IR | 1 e world of
observations n hypotheses
\/ X\... xmxm+i = \y
P[* is observed]  CDl----------- PP is true]

Figure 4. Twisting properties between sample
and’population,

that results m special properties of the popula-
tion. which we call i; on the other, the world of
actual observations where - as s the same - the
above hypotheses result in corresponding pro'perties
T on the sample, b.o we can use the likelihood ot
the actuaf Sample' m respect to 7, a quantity that m
princ'irp'le' can be'easily co pu'[edr when the'hypoﬂyer-’
ses are fully specified, to get the probability that the
corresponding I are satisfied.

ihe theorem below states that, under weak regu-

larity conditions on the data (see footnote below),
Ae general form QfF &~ argument muUst be

grounded Qn sufficient statistics [17]. Let us start
Nk Q oni-gmrmin MCHHMYAIT €C - UTTCe
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/sm(x1;i?)//sm(x2;i9) does not depend on d when
x1 and x2 belong to a same element of VL(T);

Theorem 2.1. [7] Let » = {P*. tfeO}iea regu-
lar family of probability measures on a random van-
able X, Sm = ., Xm) a sample drawn from
P, 6 » with sample space (D% )m, and T = T(Sm)
a statistic. With reference to afixed sampling mech-
ant (U,o) and denoting with Tj\z) the set of
ae Asuch that T(fa) =s (eventually fa =a)

e the twistin% aré]ument
Vm 6 N Vu = (mi,...,

€0(11) = (g$(ui),...
for a proper

um) 6 [0,1] such that
,g$(um)) = (xi,... ,xm)
and T(xIt..,,xm) - t

(0 <0 <=(T(gs(u)) > )
®)

{{gi{w) >y

for almost every u

e provided that, i) for the mentioned u and
corresponding t, for each & 6 € either
T$I(t) C orTs I{t) C (Dx)m holds,

ifT-~At") @ 0, and i) t <t <t+1 forl

suitable"(namely, for each r 6 (0, 1), there exists
a sample size m Qsuch that for each sample u of
sizem > mo | divided by the range of T with $

is uniformly bounded by r),

e can ﬂ)e sFai'ed onliy if P aj’ﬁncﬁ‘on ofga suffi-
BRRL S1UsYE o O 3,

In this inferential approach we recover the key
notion of 1 —& confidence interval for the parameter
4. intended as the pair of values (Lt,Ls) such that:

PILi <i?<Ls\>1—%

In particular:

e From (4), to compute confidence intervals for p
we choose (Li,Ls) such that

j \m—_n 7

ifora™ T 20
m / \ X
i€=k’\7’i((l_l\r_:2 (7

3See[7]for a more complete statement of the claim
including both necessary and sufficient conditions, In the
?ame paper details can be found on regularity conditions
as well. '
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Here the random variable is exactly p, and the
confidence refers to the possible suffix of a given

samPle ob™ d on This is highlighted in
FiSure 5’ where we considered a string of 20+200
nwrary umform “  bles representing, respec-
tively’ the randomness source of a sample and a
population of Bernoulli variables Then, accord-
inS to the explaining function (2) we computed

a sequence of Bernoullian 220 bits long vectors
with p rising from 0 to 1. The pairs k/20 and

hi200, computing the frequency of ones in the
sample and m the population respectively, are
reported along one fret line in the figure. We
repeated this experiment 20 times (using differ-
ent vectors of uniform variables). Then we drew
on the same graph the solutions of Equations
6 and 7 with respect to p w'ith varying k and
5

the intercePts of the above curves with a verti-
cal line with abscissa kj20 determine an inter-

vaj Gntaining almost all intercepts of the frets
with the same line. A more intensive experi-
ment would show that, in the approximation of
/1200 with the asymptotic frequency of ones in
the suffixes of the first 20 sampled values, on all
samples, and even for each sample if we draw
Tan Ysuffixes of the same one’ almost K 1“ »
Percent of the frets fall withm the analytically
computed curves.

a jf sairLpiing mechanism induces a linear re-
lation between the x and components of the
%Fg\;\ysed data, a sample Sm can be described as

gm = {(xi:Yi )W =a +b{xr-x) +erli = 1...m}

where x denotes the sample mean, a and b are
specifications of two random variables, which we
call respectively A and B, not depending on the
single observation, while e* is the random noise
moving the coordinate pairs far from the regres-
sion line. In this case, denoting with ¥; the value
assumed by the observation when unknown
parameters shift from a and b to a and b respec-
tively in the sampling mechanism, we can easily
check that

/ m m \

(a<5)0 £ ><£>) ©)
= — /

/ m m \
n<n»jy ( _J)<y ~(C_ \
\ -~/ \ * J

1 i1
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05 /US|EsA

0.25 0.5 0.75 1

Figure 5. Generating 0.9 confidence intervals
for the mean p of a Bernoulli random variable
with population and sample of n —200 and
m = 20 elements, respectively.

F = kjm = frequency of ones in the sample;
f —hjn = frequency of ones in the popula-
tion.

Fret lines: trajectories described by the num-
ber of ones in sample and population when p
ranges from 0 to 1, for different sets of initial
uniform random variables. Curves: trajecto-
ries described by the confidence interval ex-
tremes when the observed number k of 1 in
the sample ranges from 0 to m.

According to Theorem 2.1, logical relations (9)

and (10) represent a twisting argument if £ ¥
m ~1
and " 2yr(xi —x) are weak minimal sufficient
I=i
statistics.
is assumed Gaussian.

This happens when for instance ¢
In this case, after intro-

ducing the random variables Se ~ > and

m
SE=" £i{xi —x), we have
i=i

(1

FaW —1- FsP > yi~ mf}\

_ / ™
Fe{b) = 1 —FSk J2/ ¥ilxi —x) ~b A (xi - x)* |
\*=1 1= '

Moreover, since

+b(x —x) <a+b(x —x), Wx>x] <>

(a <aAb<W
Vv - —/

and

(3a\ b s.t. (a" +bl< k) A
(a+b(x—x) <0 +bl(x —x) Vx> X))

a”er having introduced the random variable

, n
S" —£i 1+w X‘-.--1] ------
W «- ™
y x /2J
the following relation holds
for I* = {(a*,b*)}/ =

{argsup {al+ bl (alb) s.t. al+ b <«k},a'e I},
where | is an assigned interval, ruled by 11:

P[A +B(x -x) <a* +b*(Xx-Xx)
Ve >- forsom0~ ~ gr] =

/ Y"Yi(xi —x)\
1-FSE 221+ T4+

\ = _)_/[' (*«—0 2

Coupling this with the analogous equation for
X < X, we obtain a confidence interval for the
whole regression line as in Figure 6. Finally,
considering the further shift of the single ob-
served point from the regression line, we obtain
the larger butterfly region in the figure repre-
senting the envelope of the confidence intervals
for these pomts. €omparing the two pairs of
(conventional and our approach) regions in Fig-
ure 6, we note that the algorithmic inner region
is designed to contain the original regression line
in full, while the standard counterpart is the
union of separate confidence intervals drawn for
each x. lhe quadratic shape of the outcoming
borders may induce some shadow zones in this
region, such that no line fully contained in the
confidence region passes through them and, in
any case, may promote the border crossing by
the source line as in the figure.

random variable T 4 with associated c.d.f.
Fx(t) =1— ~ (13)

‘Related to the distribution of survival data in breast
cancer treating [9].
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100!

Figure 6. Algorithmic confidence regions for
the Gaussian driven regression sample
{(XI,¥i) such that M =5+5(1, - x) +e,, i =
l....,20}.

with a = 20 and Xi uniformfy drawn in [0. 20].
Horizontal axis: x values; vertical axes: y val-

Bold line: source regression line.

Dark shadow region: 90% algorithmic confi-
dence region for regression line.

Light shadow region: 90% algorithmic confi-
dence region for random points.

Dark curve: 90% standard confidence region
for regression line.

Light curve: 90% standard confidence region
for random points.

where B(t) = BoR~™logt, B\ > e-1 and R0 > 0.
For a sample (ij,... ,im) drawn from T, we can
express B(t) as a function of

m
logt = —V logti
to
through the form
B(t) —B
01 ’

mere 8q = ROB o replaces Ro as one of the
:*0 objects of our inference. The benefit of this

rporesentation comes from the fact that, accord-
Xg to the inverse transform algorithm [13]. an
-Teplaining function for T associates to ev-
rry seed W the solution of

~§ o-(iog t.-iogl) 7 ii--, N\ _j
ai'’>~ *

with respect to the unknown L. Thus focusing
m

on the statistic L = £ log T, and its realization

I. we can state the following twisting argument
for R0

(B0 <~R0) & (b=" > 1)

where L

a° _
the parameter value shifts from 80 to 80. The
distribution of L is derived through the following
steps:

denotes the value assumed by L if

1. logT has the c.d.f.
FlogT(t) = 1- FCGlah)(2a - t)

where a —i+iog3i « &—i+iogsa and "b(a,b)
denotes the of a Gumbel distribution
wlth Parameters a and h.

2. The sum of Gumbel distributions is well
approximated by a Gaussian law. even for
small values of m.

Analogously, the twisting argument (f(S)\ g

RI) * (A3. 4 h) 13 based On the statistic
A
N s
—1°g”) I°g(~ log(l —L)))
1
(logTi —logT)2
where (Ui,...,Um) are the uniform random

variables used to describe T through the sam-
pling mechanism and <is one of the two usual
order relations < or >5.

Grouping these results with those in the previ-

ous sect'oni we can derive a confidence region
for B(t) taking note of the following:

distribution of H, though not analyt-
ically known in principle, can be approx-
imated by an empirical cumulative distri-
bution obtained after a suitable simulation

process.

2' This emulation as well as computations on
need t%e pr*or knowledge of Ri, which

has been approximated through its maxi-
mum hk™ood estimator [17] .

5Actually we cannot prove the sufficiency of H; how-
ever empirical simulations show the essentially monotone
behavior (either increasing or decreasing) of the statistic
values when the model parameters increase.
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6. In this section we give a dual issue of the factor-
ization lemma in our statistical framework. It sheds
light on new' methods for finding sufficient statistics
or approximations of them. The defintion of suffi-
ciency simply says that, when looking at a useful
sample property (a statistic indeed) we must focus on
properties that remain unchanged on samples having
the same occurrence probability of the observed one.

I If we do not know this probability we can estimate
|- through a maximum likelihood principle as follows.

Figure 7. 0.9 confidece region for R(t) com-
puted basing on a sample of size 21 drawn
from a clinical record, assuming FT as in
13. Dark area: confidence region; light plot:
shape of B(t) for ML estimates Ro = 0.04 and
Ri - 1.45.

3. The inference for the whole B#(t) is derived
focusing on the guantity Io%‘:&k). which
turns out to be a corresponding function
of the regression line in the usual frame-
works, depending on the parameters log /&
and logRi.

Figure 7 shows such a derived confidence region.

e At a subsymbolic level, when working with neu-
ral networks, with reference to relation (5) we

check inequalities on statistics just by changing
the parameters of the network. A main prob-
lem is to check whether the error function which
drives the visit of the parameter space is a suffi-
cient statistic or not. If it is, we can assume this
statistic as a reliable indicator of the closeness
of the current parametrization of the neural net-
work to the function to be learnt. Otherwise, we
incur the usual drawbacks such as relative mm-
ima of the statistic, overfittmg and so on. This
is the reason why Boltzmann machines [1] and
statistics consisting of the Kullback relative en-
tropy are gerenally preferred to learn probability
distributions.

3 Third step

The twisting argument leaves us with the crucial
problem of finding sufficient statistics. This problem
finds a straighforward solution through the factoriza-
tion lemma [18] when we work with easv probabilistic
models. 6n the contrary, the same lemma does not

enjoy manageable results when the distribution law
in hands is explained by complex functions, for in-
stance computing the solution of NF-hard problems

Consider the following lemma putting in relation

probability with complexity of a string.

Definition 3.1. [6] Let >Xbe the set of all binary

strings and |x the length of the string x. Denote

< 00 jaci j (s defined on x. A

partial recursive function (prf) ¢ : F — N is said

prefix 7 if p(x) < oo and d(y) < oo implies that x is

not a proper prefix of u. Fixed a universal prefix prf

. the conditional Ig.eﬁ]x (or I[evfn?)>&ompl'exi?y
}z[x\\y) of x giveny is defined as

K(x\y) = min{]pj such that U(p,y) = a}, (14)
p6™
and the unconditional Prefix Complexity K (x) of x
as

K(x) = K(Xx\X). (15)

where A'is the empty string.
Lemma 3.1. [6] The probability measure P of any
string x e T explained by the function gy (x) is related
to the prefix complexity K of x and ¢$ through the
following equation:
pri A N-KW2K(e*) (16)

The lemma fomes frQm the fact Aat _ log(P[2])
CAube uged ag a prefix code of x in a prefix machin_
gry having thfi description of gy in its library) and
N madlinery can be simuiated by a universal pre-
fix machinery V by running a code of length K{ge).
Thufj; a sequence of length _ iog(p[x])+K(g”) can be
uged tQ cede ~ in the reference machinery U of Def-
inition 3.1. Of course, in respect to this machinery
the shortest code of x has a length K (x) no greater
than the above.

Though both K(x) and K(g$) are not com-
putable in general by definition  [6], we will use

6This is the case of the distribution law of pairs of
random instance and solution of a knapsack problem [8].

Where ** th* set, ~ obtainable con-
cat%Jnaetm% Sr\ﬁrgc Oilr?el;glor{]a{)a%l%lpgfa l?:%tm)éiuting any com
putable function according to the Church thesis [3].

9This negative result is a vaxiant of the well-know Tur-
ing machine halting lemma [11].
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the upper bound in Equation 16 as a ML estimate of
P[x]. Therefore, our problem of finding a consistent
statistic approximately coincides just with the one
of reading the upper bound on the probability of a
sample and identifying the function of the sampled
data on which the upper bound depends. Disregard-
ing for a moment the term 2K”9e\ we isolate within
the other upper bound factor the part we assume
to be independent on the unknown aspects of the
population (synthetized by the parameter from
the part depending on them (the wanted statistics).
Of course, samples with this same statistic have the
same probability, apart from coefficients independent
on hence these statistics result sufficient. There-
fore a second approximation (an estimate indeed)
consists in writing the second member of (16) in such
a readable form. As mentioned before, we cannot
write the minimal codes g underlying K (x); however
we can look for very efficient programs Tras estimates
¢ of ¢ that we split as follows:

d¢ 75 (Tiwi) 5 M) N0 .m) ()

with g$(x) = g(x\' $), where the allotment of the com-
putational tasks is aimed at minimizing the total Tr*
length. Namely, we recognize in the efficient com-
pression of property t of the sample the sufficient
statistic evoking a general property of the whole pop-
ulation, while the remnant part h of Xi must be com-
puted singularly on each variable, g is the part of the
envisaged population property that we already know.
It is a cognitive constraint that generally makes dx
longer, but also a useful help in devising it. We can
easily recognize in the first term of the sequence the
—Ilog of the first factor of the likelihood factorization
when a sufficient statistic exists:

PO*0 = /i(x'b...,xm)/2(i(xi,...,.xm)5") (18)

Here we further split / 2, thus allowing a balancing
of description complexities of statistics, constraints,
and residual unknown parts of a sample (which looks
for an enlarged issue of the structural risk minimiza-
tion principle introduced in [16]).

Summing up, Equation 16 reads:

P(x) =
m
- Y, K(h(xi)) - K{t{xx, xn)) - K(g)
2 =i 2K "9n

19

2K (g*) is a sort of rewarding factor allowing us
to assume great probability in case of complex ex-

plaining functions. However neither the true $ nor
the true complexity value is known; thus the maxi-
mum likelihood principle requires us to give a very
short global description of the sample by minimiz-
ing the total length of >xxas in Equation 17. In line
with current thread on hybrid systems [2, 5, 15] we
may imagine fulfilling this task in a subsymbolic and
a symbolic step. The former accounts for what we
formally know about the string sampling mechanism.
The subsymbolic part must supply what still remains
unkown. This atypical job of a neural network for in-
stance. In this case a subsidiary inference task arises
to estimate the parameters of this device. Thus an-
other (hopefully sufficient) statistic joins the previ-
ous one; in other words, we realize that the global
inference problem needs a pair of sufficient statistics.
Learning a neural network is a non easy problem sup-
ported by an actually poor theory. In the previous
section we got some insights from the twisting argu-
ment theory, but we can enjoy still poorer intuition
about the joint estimation of the pair of statistics.
Rather, still in the aim of minimizing our sample de-
scription, we enunciate the following “don’t cheat”
principle:

Principle 1. For suitably describing a function on
a training set, aformula beats a neural network only
if its description length, including observed statistics
for free parameters, is shorter than the neural net-
works.

Example 3.1. In force of the above principle,

1. The symbolic description of the XOR func-
tion, for instance through the formula “1 —
XIX2 - (1 - £i)(I —£2)”, beats its descrip-
tion through a neural network described by
a 2-2-1 MLP, namely ‘“a(5.52(a(—1.49a:1 +
1.48x2 - 0.53)) + 5.52H —1.48zi - 1.49rr2 -
0.53)) —3.27” where a denotes a sigmoidal
activation function, learnt from the sample
{(1,1,0), (1,0,1), (0,1,0), (0,0,0)} through the
usual backpropagation algorithm [14]-

2. In classifying em,otions in a phonetic database, a
C4°5[10] decison tree consisting of 64 IF-THEN-
ELSE rules on 74 features is definitely beaten by
a Support Vector Machine [16] with linear kernel
on the same variables [4>

4 Conclusions
We moved from a first model based on a random

bit generator where the sole knowledge we can ex-
tract is the frequency of ones in the next bits, to a
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second model where the random source is coupled
with a computing machinery and we observe prop-
erties about the latter, up to the last model where
the random source disappears in favor of a prefix
machinery coup,[ea with the unfeasible job of com-
p)utmg the shortest descriptions. . We realize the in-
erence goa| is to compute proper'ﬁes whicH coult He
ascertained in terms of occurrence frequencies in the
future observations of a phenomenon, and conclude
that these properties have nothing to do with the
mysterious operation of tossing a coin; rather, they
merely represent a correct synthesis of what we have
already observed or know about the phenomenon.
This approcah, whose ultimate randomness source
lies in some uncomputable strings, ¢’s in the last
section, allows us to deepen some crucial inference
task at both symbolic (regression curves) and sub-
symbolic (neural networks) levels. Moreover, a fur-
ther release of the minimal structural risk minimiza-

tion principle sheds some light on the designing of
hybrid subsvmbolic-symbolic learning paradigms.
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