
Minsk, Belarus, October 2-4, 2001

VLSI IMPLEMENTATION OF AN ARTIFICIAL NEURAL NETWORK
FOR A REAL TIME DETECTION PROBLEM

Marco Krips, Anton Kummert

Communication Theory, Department of Electrical and Information Engineering, University of
Wuppertal, Rainer-Gruenter-Strasse 21, 42119 Wuppertal, Germany, phone: +49-202-4391961,
e-mail: krips@uni-wuppertal.de

A b s t r a c t

Real time image processing is an interesting
field of application for artificial neural networks as
well as for very large scale integrated (VLSI) cir
cuits. This paper shows how the advantage of par
allel computing of neural network algorithms can
be realized by the potentials of VLSI circuits in or
der to design a real time detection and tracking
system for video image processing.

A real time localization and tracking algorithm
has been developed for detecting human hands in
video-images. Due to the real time aspect, a single-
pixel-based classification is aspired, so that a con
tinuous data stream can be processed. Conse
quently, no storage of full images or parts of them
is necessary. The classification, whether a pixel be
longs to a hand or to the background, is done by
analysing the RGB-values of a single pixel by
means of an artificial neural network. To obtain the
full processing speed of the neural network a paral
lel operating hardware solution is realised.

1. INTRODUCTION

Safety aspects in industrial facilities are of
growing importance. In some fields approved
methods like safety light barriers or safety light
curtains are not applicable. An example for such a
complicated workplace can be found at a press
brake, where workpieces have to be handled even
close to the danger area. The herein before men
tioned systems would make it impossible to guar
antee an undisturbed workflow. Hence, new meth
ods for workplace safeguarding are needed. One
basic approach will be introduced subsequently.

In this study a safeguard for a press brake’s
workplace will be investigated. The tracing is done
by a video based system that detects human’s
hands, which are in danger mostly, and evaluates if
there is a risk of bodily harm for the operator. This
paper is limited to the discussion of the algorithms
for the detection problem and of a hardware im
plementation of these algorithms.

Based on its colour, a real-time localization al
gorithm has been developed. In contrast to many

other industrial applications reference image tech
niques turned out to be less successful for our
problem. This is due to the fact that many different
hand shapes have to be compared, whereas in other
applications the actual position of workpieces can
be compared easily with reference positions. Cer
tainly, the use of a large database filled with refer
ence images could be a solution, however, real
time processing would be impossible with such an
approach.

Taking into account short admissible processing
times, we concentrated our research on pixel based
operations. In our system, each pixel provided by a
video camera is classified, whether it belongs to a
hand or to the background. The classification is
done by analysing the RGB-values by means of an
artificial neural network.

The theory of neural networks is not discussed
in detail since this would be out of the scope of this
work. Nevertheless, references are added for fur
ther information.

2. Artificial Neural Netw ork

There exist many types and architectures of
neural networks (NN), e.g. Perceptron [1], RBF [2]
or self-organizing map [3]. It can be shown that
several architectures and network classes, respec
tively, are eligible for the presented hand-detection
problem. Nevertheless, regarding to the best ratio
of performance to network dimension (hardware
effort) this paper focuses on special multilayer
feedforward network structures.

2.1. Network architecture

The neuron is the basic information processing
unit that is fundamental to the operation of a neural
network. Figure 1 shows the model of a neuron as
used in this work. Attention should be paid to the
handling of the “bias” value b. The latter is taken
into account as an additional weighted input signal
of the neuron. This input signal has the constant
value “1” and is multiplied by the weight wnj = by
So one gets a simplified mathematical description
of the neuron.

199

http://edoc.bseu.by

mailto:krips@uni-wuppertal.de

International Conference on Information Networks, Systems and Technologies

Figure 1. Nonlinear model o f a neuron

In mathematical terms, we can describe a neu
ron j by writing the following set of equations:

n

mtj = (1)
/=1

and

y j= f A netj) (2)

where xh x2, xn are the input signals; wlj9
w 2j , ..., w nJ are the synaptic weights of neuron j \

netj is the signal after the summing node; f a is the
nonlinear activation function; and yj is the output
signal of the neuron.

Next, the network architecture has to be exam
ined. A multilayer feedforward network consists at
least of an input and an output layer. Between
these, several hidden layers can occur. Each layer
can consist of several neurons. The architecture of
the neural networks used in our context is pre
sented in the following. First of all, the input layer
has to be considered.

ya .

Figure 2. Architecture o f the neural network

The number of input neurons is specified by the
basic raw data, which is provided by a video

camera. There are 3 neurons needed for the three
colour values (RGB) of each single pixel. It can be
shown that this colour representation is to be most
appropriate to detect human hands compared to
other systems e.g. the Yuv colour space [4]. As
mentioned before we restricted our analysis to sin
gle pixel-based algorithms. Therefore, the result of
the neural network should be a 1 if the presented
pixel has the colour of a hand and 0 otherwise.
Hence, only one output neuron is needed.

The next aspect, which has to be investigated, is
the number of hidden layers and neurons within
these layers. Tests proved that even neural net
works consisting of one hidden layer with three
neurons produce outstanding results as shown
subsequently.

A scheme of the basic architecture is shown in
Figure 2. For easier understanding the biases are
not drawn as additional weighted inputs, but as
“real” biases.

Besides the architecture, the learning algorithm
used for training is important for convergence
speed and the results of the neural network, respec
tively.

2.2. Supervised Learning

The most common algorithm for multilayer
feedforward network training is backpropagation.
Since this algorithm has been presented in [5], it
has been modified in various aspects. In this con
text only a few algorithms should be mentioned,
e.g. conjugate gradient algorithms [6] or the
Broyden, Fletcher, Goldfarb, and Shanno (BFGS)
update [7]. The advantage of all these different
variations of the standard backpropagation algo
rithm relies on the fact that they are mostly more
efficient concerning a better convergence and re
duced training time, respectively. During the de
velopment phase for designing the neural networks
by means of the software tool MATLAB® two
variants proved to be the best solutions for our
problem, namely the Marquardt-Levenberg algo
rithm [8] and RPROP [9].

The Marquardt-Levenberg algorithm (ML) is an
approximation to Newton’s method while back
propagation is a steepest descent algorithm. It
minimizes the sum of squares of errors over all in
puts. For Newton’s method the weight-updates are
computed by

A w = - [v 2£ (w)]‘ I V £ '(w) (3)

200

Minsk, Belarus, October 2-4, 2001

where V2i?(w) is the Hessian matrix and V£(w) is
the gradient of the error function £(w) that depends
on the parameter vector w and has the form of a
sum of squares. The Marquardt-Levenberg algo
rithm avoids computing the Hessian matrix. In
stead, an approximation by means of the Jacobian
matrix is used. The Jacobian matrix can be com
puted by a standard backpropagation technique
that is much less complex than computing the Hes
sian matrix.

The weight-updates are computed accordingly
to

Aw = \ j T (w)/(w)+ /d]"1 J t (w)e(w) (4)

where J(w) is the Jacobian matrix. The weight up
dating can be described as follows:

Whenever a step would result in an increased
£(w) the parameter // is increased by a constant
factor /3 and it is decreased by division by Д
whenever a step reduces £(w). So, if // is large, the
algorithm becomes similar to steepest decent,
whereas for small fi the algorithm becomes similar
to Gauss-Newton.

A further algorithm has been'analysed for the
learning task namely the resilient propagation
(RPROP) algorithm. RPROP performs a local ad
aptation of the weight-updates Aw according to the
behaviour of the error function.

Aw.(0 =
A,(t) , if

-A w .(t-1) , if

_Sgn(^^)A (0dw.

Э E (t - 1) Э£(0
dwtJ dw,j

Э E (t - 1) Э E{t)

b E { t - 1) dE(t)

dwtj 3w..

,else

> 0 л

> 0 A

<0

Э E(t)
d w ;j

dm
Эмл.

>0

< 0

(5)

By this, an individual update value Ay is com
puted for each weight, which does not depend on
the unforeseeable influence of the magnitude of the
partial derivative but only depends on the behav
iour of its sign.

A * (0 =

77+Д ,('-1) >lf — г---- - - ^ -^ > 0Э Wy dwtJ

(6)
Эмл. dw.;

A J t - l) , else

The update value is increased by the factor i f
whenever the partial derivative of the error func
tion has the same sign for two successive itera
tions. The update value is decreased by the factor
rf whenever the partial derivative changes its sign.
The update value remains the same if the deriva
tive is zero. When the weights are oscillating, the
weight change will be reduced. If the derivative re
tains its sign, the update value itself is slightly in
creased in order to accelerate convergence in shal
low regions.

While ML and RROP are suitable for super
vised learning, a sample image and its correspond
ing output-reference or teacher, respectively, is
needed. Due to the aspect that the network learning
is done by a software based simulation tool on a
workstation it is not recommendable to use a whole
frame since this would lead to enormously long
learning times. For this, a sample image is clipped
from a whole frame provided by the video camera.

#
Figure 3. Clipped training pattern and corre
sponding output reference (teacher) image

The next step is the extraction of the output
reference (teacher). For doing this the binary image
is manually created by means of graphic software.

During learning the sample image is presented
to the network recurrently. After each recursion an
error signal is computed and propagated backwards
through the network to adjust the weights and bi
ases. As performance function the mean square er
ror (MSE) was used. The Marquardt-Levenberg
algorithm (MSE = 0.00521778) provides a slightly
better result as RPROP (MSE = 0.00566031) as
presented in [10].

Nevertheless, RPROP has the advantage that it
needs less memory during training and additionally
generates weights, which can be better modified

201

International Conference on Information Networks, Systems and Technology

for implementation. Therefore we used RPROP for
network training.

A discussion of the graphical results follows in
section 4 together with the results of the hardware
realization of the neural network.

3. VLSI D e s ig n

The model of the neural network for hardware
implementation has been described by VHDL
(Very High Speed Integrated Circuit (VHSIC)
Hardware Description Language) [11]. The choice
of VHDL was made due to its flexibility and the
fact that it is a standard language (IEEE 1076).
Furthermore, it is a target device independent de
signing tool, i.e. with one design description many
device architectures can be included. For testing
we used an Field Programmable Gate Array
(FPGA). The advantage of an FPGA can be seen in
the fact that it can be easily reconfigured since its
configuration will be lost if power supply is
switched off. Furthermore the latter becomes more
and more standard solution in different application
fields, e.g. research and development, prototyping
and areas where short “time to market” windows or
updating via Internet are desirable.

Naturally, hardware implementations require
modifications of the neural network architecture
compared to software solutions.

First, the data type of the neural network’s
weight and bias coefficients has to be changed
from real type into integer. The latter can be used
immediately in VHDL. To be more specific, it can
be easily represented as std_logic_vector type,
which is the most suitable data type for digital
processing. Secondly the nonlinear activation func
tion must be modified. In the software based neural
network the hyperbolic tangent function (tanh) has
been used. This function is not a standard object
for an implementation in an FPGA. Therefore, an
approximation has to be applied.

Moreover the input signal range has to be ad
justed to a defined 8 Bit representation of the
RGB-signals i.e. to the interval [0, 255]. In contrast
to this the software-based neural network was
computed for an input signal range [0, 1], hence
the factor 255 has to be taken into account for the
weights and the activation function.

3.1. Neural Network Modifications

The first aspect, which has to be handled, is the
data type conversion. It is insufficient to round the
weights directly since many coefficients lie in the
interval [0, 1]. So the rounding operation would
cause the elimination of connections by rounding

the weights to zero, if vt>ij < 0.5. In order to avoid
this, weights are multiplied by a constant factor a.

In other words coefficient values in the interval
[0, 1] are transformed into (oe+1) quantization
levels. Thus the coefficients in the integer data
type are computed by

w,„, = found {a ■ wreal) . (7)

The second problem for hardware implementa
tion is the tanh-function. Obviously, a classical so
lution to this problem is the use of a look-up-table
(LUT). Since this LUT is required for every neu
ron of the neural network its size has major influ
ence on the required gate size of the FPGA. Re
source sharing is not an acceptable option due to
parallel processing and the very short processing
times, which are aspired. Consequently, we con
centrated our attention on the minimization of the
LUT.

The tanh- function has been linearly quantized
to provide many quantization levels around zero
and less at the extreme values 1 and -1. This be
haviour is worthwhile since a special sensitive
fragmentation around zero is needed whereas this
is not necessary in upper and lower saturation re
gions. Furthermore the latter can be separated by
the borders -L and L, for which we defined
L=2.6467 which corresponds to 99% of the maxi
mum value 1. This means that the function has to
be quantized in the input interval [-2.6467, 2.6467]
only. Other arguments result in -1 and 1, respec
tively.

Another important aspect, which has to be taken
into account, is to take care that zero gets its own
quantization level. This is required because a zero
output represents a “non-existent connection”. A
different behaviour of the LUT would lead to serve
errors since an “additional connection” would be
added.

The number of quantization levels has been
fixed on the basis of tests with different LUTs each
with its own quantization level for zero. As Crite
ria for quality the following value Qa was defined

e . = JV 1000 1000 (8)

where LUT(x) is the output of the LUT for the
given argument x and N is the number of samples.

The results given in Table 1 show that even a
LUT with only 15 (LUT 15) quantization levels
provides sufficient results so that larger LUTs with

202

Minsk, Belarus, October 2-4, 2001

31 or 511 levels are not necessary. These results
are validated by the binary output results [10] of
the neural network as well. For every neuron a
separate LUT is needed on the chip hence, a LUT
as small as possible is recommendable as men
tioned before. In our case the network consists of
4 neurons this means that also 4 LUTs are needed.

Table 1. Quality of LUTs (N=12000)

LUT 15 LUT 3 1 LUT 5 1 1

6 a 1 .2E -3 2 .0 7 E -4 4 .7 4 E -6

Figure 4 shows the characteristic of the
LUT 15 for implementation, which takes all neces
sary modifications, as different input range of the
RGB-values [0, 255] instead of [0, 1], a = 10, and
the new output range [-255, 255], into account.
This LUT is used for the hidden neurons.

X

Figure 4. Approximation o f tanh

For the output neuron the range of output values of
the LUT has been reduced to “0” and “1”. So a fur
ther processing unit, a threshold decision-maker,
can be saved, i.e. the threshold is defined within
the output LUT.

4. Detection Results

The evaluation of binary result images of the neu
ral network is based on a comparison between op
timal (used for training) and simulated results by
using the quality measure

(9)
i j W

where titj is the pixel of the corresponding output
reference (teacher) and ritj is the equivalent pixel of
the computed result image. The value ye is called
error subsequently.

4.1. Binary Result Images

The binary result image of the ideal network as
used in software based simulations includes 199
errors (Figure 5 b). These errors correspond to an
error rate of 0.702 % with respect to the learning
sample image (Figure 5 a). The results of the im-
plementable NNs are slightly inferior to the origi
nal NN. The error values ye= 221 (LUT 15) and
Ye~ 204 (LUT 511) correspond to an error rate of
0.780 % and 0.720 %, respectively. The modifica
tions applied after the learning phase do not affect
the performance of the NN.

t

a) sample image b) orig inal, ye=199

t
c) LUT 15, ye=221 d) LUT 511 , ye=204

Figure 5. Binary result images (training pattern)

The results in Figure 5 show that there are a few
parts marked as belonging to the hand, which defi
nitely do not match. However, these misclassifica-
tions are of size 1 to 4 pixels in diameter. So these
errors can be deleted by means of morphological
operations like opening, erosion and dilation [12].
The morphological operations are performed very
quickly, since they are applied to binary images

203

International Conference on Information Networks, Systems and Technologies

P f
a) Full Frame o f the Training Pattern b) Verification Image 1

у ж

с) Verification Image 2 d) Verification Image 3

Figure 6. Detection results o f full images: Image including training pattern (a), Images including non-trained
hands (b, c, d)

only. So all regions outside the hand representing
classification errors can be deleted without affect-
ing the detection of the hand.

4.2. Generalisation of the Detection Problem

Generally, learning strategies could lead to solu
tions, which only work well for inputs from the
learning data set whereas other inputs could lead to
misclassifications. Nevertheless, the neural net
work should be useable for many different images
of the same acquisition situation and detection al
ways should be possible. This is called generalisa
tion. This aspect can be easily checked by present
ing different images to the neural network and ana
lysing the results.

In Figure 6 a) the binary output of the neural
network for the full input frame (288x384 pixels)
of the clipped training pattern is shown. It can be
seen that the detection of both hands is possible.

In addition, the generalization behaviour has
been tested with pairs of hands that have not been
trained. The results achieved by the NN are also
excellent (Figure 6 b, c, d). Furthermore, the classi
fication errors in each binary output can be deleted
by morphological operations, which have not been
applied yet.

4.3. Hardware Results

The results provided by the FPGA realisation of
the neural network and those given by the original
MAT LAB® based solution without any modifica
tions applied, differ in less than 0.02% for an im
age of size 288x384.

Certainly, the processing times depend on the
target device. Processing time defines the time to
get the result for a whole frame without applying
morphological operations.

Due to the VHDL entry of the VLSI circuit de
sign the target device can be changed easily. In
Table 2 the results of two implementations are
compared. It reflects that as target device not only
the latest technology is necessary, but that it would
improve enormously the performance of the detec
tion system. The detection system in terms of the
neural network can be implemented in a Xilinx®
xc4013e FPGA as well as in a Xilinx® Virtex®
xcvlOO. The detection results concerning the error
>’e are identically. The differences appear in the de
lay time d̂eiay and the processing speed. The delay
between input signal and corresponding output
signal differ in about 337 ns between the two reali
sations (Table 2). The processing time tproc for a
whole image of 288x384 pixels is less than 45 ms

Table 2. FPGA utilization and processing times

Typ̂ e of FPGA xe4013e xcvlOO

CLBs/Slices 574 CLBs 418 Slices

Utilization 99.7 % 34%

Delay fdeiay 408.6 ns 71 ns

Processing time
p̂roc

< 45 ms < 10ms

204

Minsk, Belarus, October 2-4, 2001

for the xc4013 and for the Virtex® implementation
p̂roc is 4.5 times less, respectively.

Nevertheless, the use of recent technology with
a hardware overhead is recommended since the
morphological operations have to be implemented
additionally and last but not least strategies for sys
tem testing [13] have to be build in as well. This is
an important issue as this detection system can be
used as one component in a video-based safety fa
cility. So testing is not only important during de
signing but also during the normal duty to guaran
tee accurate detection and tracking for the whole
lifetime of the system.

5. Conclusion

In this paper a pretentious detection and track
ing problem is presented, which can be solved in
real-time by using a neural network. The presented
NN permits reliable real-time detection combined
with a very compact network architecture. It is ob
vious that a challenging problem like hand tracking
cannot be solved completely by simply applying a
neural network. However, the misclassifications
can be eliminated by a further % processing step,
namely binary morphological operations.

A hardware solution using an FPGA has the big
advantage that the fundamental idea of a NN, the
parallel information processing, can be used.
Moreover, a fast update of the FPGA’s configura
tion can be done e.g. with new coefficients, if a
new training is necessary.

The presented system is only the first step of
the implementation of a neural network in an
FPGA. The next step is the integration of the
hardware into the training phase to speed up the
learning process and to increase the flexibility of
the system.

[1]. Minsky М., Papert S.: Perceptrons - An Introduc
tion to Computational Geometry. MIT Press, Cam
bridge, Mass., 1969

[2]. Haykin S.: Neural Networks - A Comprehensive
Foundation. Macmillan College Publishing Com
pany, New York, 1994

[3]. Kohonen Т.: The Self-Organizing Map. Proc. of
the IEEE, Vol.78, No.9, 1990, pp. 1464-1477

[4]. Littmann E., Ritter H.: Adaptive Color Segmenta
tion - A Comparison o f Neural and Statistical
Methods. IEEE Trans, on Neural Networks,
vol. 8, 1997, pp. 175-184

[5]. Rumelhart D.E., McClelland J.L.: Parallel Distrib
uted Processing - Exploration in the Microstructure
o f Cognition. Vol.l: Foundations, MIT Press,
Cambridge, Mass., 1986

[6]. Hagan M.T., Demuth H.B., Beale M.H.: Neural
Network Design. PWS Publishing, Boston, Mass.,
1996

[7]. Dennis J.E., Schnabel R.B.: Numerical Methods
for Unconstrained Optimization and Nonlinear
Equations. Prentice Hall, Englewood Cliffs, NJ,
1983

[8]. Hagan M.T., Menhaj M.B.: Training Feedforward
Networks with the Marquardt Algorithm. IEEE
Trans, on Neural Networks, Vol.5, No.6, 1994, pp.
989-993

[9]. Riedmiller М., Braun H.: A direct Adaptive
Method for Faster Backpropagation Learning: The
RPROP Algorithm. Proc. of the International Con
ference on Neural Networks, 1993, pp. 586-591

[10].Krips М., Kummert A., Velten J.: FPGA-
Implementation of a Neural Network for real-time
hand-detection in video-images, Proc. o f Interna
tional Conference on Signal Processing Applica
tions & Technology (ICSPAT’00), Dallas, Tx,
USA, 2000

[11]. Ashenden P.J.: The Designer’s Guide to VHDL.
Morgan Kaufmann Publishers, San Francisco,
1999

[12].Haralick R.M., Sternberg S.R., Zhuang X.: Image
Analysis Using Mathematical Morphology. IEEE
Trans, on Pattern Analysis and Machine Intelli
gence, vol. PAMI-9, No.4, 1987,
pp. 532-550

[13]. Yarmolik V.N.: Fault Diagnosis o f Digital Circuits.
John Wiley & Sons, Chichister, England, 1990

Referen ces

205

