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A b s t r a c t

Real time image processing is an interesting 
field of application for artificial neural networks as 
well as for very large scale integrated (VLSI) cir
cuits. This paper shows how the advantage of par
allel computing of neural network algorithms can 
be realized by the potentials of VLSI circuits in or
der to design a real time detection and tracking 
system for video image processing.

A real time localization and tracking algorithm 
has been developed for detecting human hands in 
video-images. Due to the real time aspect, a single- 
pixel-based classification is aspired, so that a con
tinuous data stream can be processed. Conse
quently, no storage of full images or parts of them 
is necessary. The classification, whether a pixel be
longs to a hand or to the background, is done by 
analysing the RGB-values of a single pixel by 
means of an artificial neural network. To obtain the 
full processing speed of the neural network a paral
lel operating hardware solution is realised.

1. INTRODUCTION

Safety aspects in industrial facilities are of
growing importance. In some fields approved 
methods like safety light barriers or safety light 
curtains are not applicable. An example for such a 
complicated workplace can be found at a press 
brake, where workpieces have to be handled even 
close to the danger area. The herein before men
tioned systems would make it impossible to guar
antee an undisturbed workflow. Hence, new meth
ods for workplace safeguarding are needed. One 
basic approach will be introduced subsequently.

In this study a safeguard for a press brake’s 
workplace will be investigated. The tracing is done 
by a video based system that detects human’s 
hands, which are in danger mostly, and evaluates if 
there is a risk of bodily harm for the operator. This 
paper is limited to the discussion of the algorithms 
for the detection problem and of a hardware im
plementation of these algorithms.

Based on its colour, a real-time localization al
gorithm has been developed. In contrast to many

other industrial applications reference image tech
niques turned out to be less successful for our 
problem. This is due to the fact that many different 
hand shapes have to be compared, whereas in other 
applications the actual position of workpieces can 
be compared easily with reference positions. Cer
tainly, the use of a large database filled with refer
ence images could be a solution, however, real
time processing would be impossible with such an 
approach.

Taking into account short admissible processing 
times, we concentrated our research on pixel based 
operations. In our system, each pixel provided by a 
video camera is classified, whether it belongs to a 
hand or to the background. The classification is 
done by analysing the RGB-values by means of an 
artificial neural network.

The theory of neural networks is not discussed 
in detail since this would be out of the scope of this 
work. Nevertheless, references are added for fur
ther information.

2. Artificial Neural Netw ork

There exist many types and architectures of
neural networks (NN), e.g. Perceptron [1], RBF [2] 
or self-organizing map [3]. It can be shown that 
several architectures and network classes, respec
tively, are eligible for the presented hand-detection 
problem. Nevertheless, regarding to the best ratio 
of performance to network dimension (hardware 
effort) this paper focuses on special multilayer 
feedforward network structures.

2.1. Network architecture

The neuron is the basic information processing 
unit that is fundamental to the operation of a neural 
network. Figure 1 shows the model of a neuron as 
used in this work. Attention should be paid to the 
handling of the “bias” value b. The latter is taken 
into account as an additional weighted input signal 
of the neuron. This input signal has the constant 
value “1” and is multiplied by the weight wnj = by 
So one gets a simplified mathematical description 
of the neuron.
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Figure 1. Nonlinear model o f a neuron

In mathematical terms, we can describe a neu
ron j  by writing the following set of equations:

n

mtj = ( 1)
/=1

and

y j= f A netj)  (2)

where xh x2, xn are the input signals; wlj9 
w 2j ,  ..., w nJ are the synaptic weights of neuron j \  

netj is the signal after the summing node; f a is the 
nonlinear activation function; and yj is the output 
signal of the neuron.

Next, the network architecture has to be exam
ined. A multilayer feedforward network consists at 
least of an input and an output layer. Between 
these, several hidden layers can occur. Each layer 
can consist of several neurons. The architecture of 
the neural networks used in our context is pre
sented in the following. First of all, the input layer 
has to be considered.

ya .

Figure 2. Architecture o f the neural network

The number of input neurons is specified by the 
basic raw data, which is provided by a video

camera. There are 3 neurons needed for the three 
colour values (RGB) of each single pixel. It can be 
shown that this colour representation is to be most 
appropriate to detect human hands compared to 
other systems e.g. the Yuv colour space [4]. As 
mentioned before we restricted our analysis to sin
gle pixel-based algorithms. Therefore, the result of 
the neural network should be a 1 if the presented 
pixel has the colour of a hand and 0 otherwise. 
Hence, only one output neuron is needed.

The next aspect, which has to be investigated, is 
the number of hidden layers and neurons within 
these layers. Tests proved that even neural net
works consisting of one hidden layer with three 
neurons produce outstanding results as shown 
subsequently.

A scheme of the basic architecture is shown in 
Figure 2. For easier understanding the biases are 
not drawn as additional weighted inputs, but as 
“real” biases.

Besides the architecture, the learning algorithm 
used for training is important for convergence 
speed and the results of the neural network, respec
tively.

2.2. Supervised Learning

The most common algorithm for multilayer 
feedforward network training is backpropagation. 
Since this algorithm has been presented in [5], it 
has been modified in various aspects. In this con
text only a few algorithms should be mentioned, 
e.g. conjugate gradient algorithms [6] or the 
Broyden, Fletcher, Goldfarb, and Shanno (BFGS) 
update [7]. The advantage of all these different 
variations of the standard backpropagation algo
rithm relies on the fact that they are mostly more 
efficient concerning a better convergence and re
duced training time, respectively. During the de
velopment phase for designing the neural networks 
by means of the software tool MATLAB® two 
variants proved to be the best solutions for our 
problem, namely the Marquardt-Levenberg algo
rithm [8] and RPROP [9].

The Marquardt-Levenberg algorithm (ML) is an 
approximation to Newton’s method while back
propagation is a steepest descent algorithm. It 
minimizes the sum of squares of errors over all in
puts. For Newton’s method the weight-updates are 
computed by

A w  =  - [ v 2£ ( w )]‘ I V £ '( w )  (3 )
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where V2i?(w) is the Hessian matrix and V£(w) is 
the gradient of the error function £(w) that depends 
on the parameter vector w and has the form of a 
sum of squares. The Marquardt-Levenberg algo
rithm avoids computing the Hessian matrix. In
stead, an approximation by means of the Jacobian 
matrix is used. The Jacobian matrix can be com
puted by a standard backpropagation technique 
that is much less complex than computing the Hes
sian matrix.

The weight-updates are computed accordingly
to

Aw = \ j T (w)/(w)+ /d ]"1 J t (w)e(w) (4)

where J(w) is the Jacobian matrix. The weight up
dating can be described as follows:

Whenever a step would result in an increased 
£(w) the parameter // is increased by a constant 
factor /3 and it is decreased by division by Д 
whenever a step reduces £(w). So, if // is large, the 
algorithm becomes similar to steepest decent, 
whereas for small fi the algorithm becomes similar 
to Gauss-Newton.

A further algorithm has been'analysed for the 
learning task namely the resilient propagation 
(RPROP) algorithm. RPROP performs a local ad
aptation of the weight-updates Aw according to the 
behaviour of the error function.

Aw.(0 =
A,(t) , if

-A w .(t-1) , if

_Sgn(^^)A (0dw.

Э E ( t - 1) Э£(0
dwtJ dw,j

Э E ( t - 1) Э E{t)

b E { t - 1) dE(t)

dwtj 3w.. 

,else

> 0 л

> 0 A

<0

Э E(t)
d w ;j

dm
Эмл.

>0

< 0

(5)

By this, an individual update value Ay is com
puted for each weight, which does not depend on 
the unforeseeable influence of the magnitude of the 
partial derivative but only depends on the behav
iour of its sign.

A * (0  =

77+Д ,( '-1 ) >lf — г---- - - ^ -^ > 0Э Wy dwtJ

(6)
Эмл. dw.;

A J t - l )  , else

The update value is increased by the factor i f  
whenever the partial derivative of the error func
tion has the same sign for two successive itera
tions. The update value is decreased by the factor 
rf whenever the partial derivative changes its sign. 
The update value remains the same if the deriva
tive is zero. When the weights are oscillating, the 
weight change will be reduced. If the derivative re
tains its sign, the update value itself is slightly in
creased in order to accelerate convergence in shal
low regions.

While ML and RROP are suitable for super
vised learning, a sample image and its correspond
ing output-reference or teacher, respectively, is 
needed. Due to the aspect that the network learning 
is done by a software based simulation tool on a 
workstation it is not recommendable to use a whole 
frame since this would lead to enormously long 
learning times. For this, a sample image is clipped 
from a whole frame provided by the video camera.

#
Figure 3. Clipped training pattern and corre
sponding output reference (teacher) image

The next step is the extraction of the output 
reference (teacher). For doing this the binary image 
is manually created by means of graphic software.

During learning the sample image is presented 
to the network recurrently. After each recursion an 
error signal is computed and propagated backwards 
through the network to adjust the weights and bi
ases. As performance function the mean square er
ror (MSE) was used. The Marquardt-Levenberg 
algorithm (MSE = 0.00521778) provides a slightly 
better result as RPROP (MSE = 0.00566031) as 
presented in [10].

Nevertheless, RPROP has the advantage that it 
needs less memory during training and additionally 
generates weights, which can be better modified
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for implementation. Therefore we used RPROP for 
network training.

A discussion of the graphical results follows in 
section 4 together with the results of the hardware 
realization of the neural network.

3. VLSI D e s ig n

The model of the neural network for hardware 
implementation has been described by VHDL 
(Very High Speed Integrated Circuit (VHSIC) 
Hardware Description Language) [11]. The choice 
of VHDL was made due to its flexibility and the 
fact that it is a standard language (IEEE 1076). 
Furthermore, it is a target device independent de
signing tool, i.e. with one design description many 
device architectures can be included. For testing 
we used an Field Programmable Gate Array 
(FPGA). The advantage of an FPGA can be seen in 
the fact that it can be easily reconfigured since its 
configuration will be lost if power supply is 
switched off. Furthermore the latter becomes more 
and more standard solution in different application 
fields, e.g. research and development, prototyping 
and areas where short “time to market” windows or 
updating via Internet are desirable.

Naturally, hardware implementations require 
modifications of the neural network architecture 
compared to software solutions.

First, the data type of the neural network’s 
weight and bias coefficients has to be changed 
from real type into integer. The latter can be used 
immediately in VHDL. To be more specific, it can 
be easily represented as std_logic_vector type, 
which is the most suitable data type for digital 
processing. Secondly the nonlinear activation func
tion must be modified. In the software based neural 
network the hyperbolic tangent function (tanh) has 
been used. This function is not a standard object 
for an implementation in an FPGA. Therefore, an 
approximation has to be applied.

Moreover the input signal range has to be ad
justed to a defined 8 Bit representation of the 
RGB-signals i.e. to the interval [0, 255]. In contrast 
to this the software-based neural network was 
computed for an input signal range [0, 1], hence 
the factor 255 has to be taken into account for the 
weights and the activation function.

3.1. Neural Network Modifications

The first aspect, which has to be handled, is the 
data type conversion. It is insufficient to round the 
weights directly since many coefficients lie in the 
interval [0, 1]. So the rounding operation would 
cause the elimination of connections by rounding

the weights to zero, if vt>ij < 0.5. In order to avoid 
this, weights are multiplied by a constant factor a.

In other words coefficient values in the interval 
[0, 1] are transformed into (oe+1) quantization 
levels. Thus the coefficients in the integer data 
type are computed by

w,„, = found {a ■ wreal) . (7)

The second problem for hardware implementa
tion is the tanh-function. Obviously, a classical so
lution to this problem is the use of a look-up-table 
(LUT). Since this LUT is required for every neu
ron of the neural network its size has major influ
ence on the required gate size of the FPGA. Re
source sharing is not an acceptable option due to 
parallel processing and the very short processing 
times, which are aspired. Consequently, we con
centrated our attention on the minimization of the 
LUT.

The tanh- function has been linearly quantized 
to provide many quantization levels around zero 
and less at the extreme values 1 and -1. This be
haviour is worthwhile since a special sensitive 
fragmentation around zero is needed whereas this 
is not necessary in upper and lower saturation re
gions. Furthermore the latter can be separated by 
the borders -L and L, for which we defined 
L=2.6467 which corresponds to 99% of the maxi
mum value 1. This means that the function has to 
be quantized in the input interval [-2.6467, 2.6467] 
only. Other arguments result in -1 and 1, respec
tively.

Another important aspect, which has to be taken 
into account, is to take care that zero gets its own 
quantization level. This is required because a zero 
output represents a “non-existent connection”. A 
different behaviour of the LUT would lead to serve 
errors since an “additional connection” would be 
added.

The number of quantization levels has been 
fixed on the basis of tests with different LUTs each 
with its own quantization level for zero. As Crite
ria for quality the following value Qa was defined

e . = JV 1000 1000 (8)

where LUT(x) is the output of the LUT for the 
given argument x and N is the number of samples.

The results given in Table 1 show that even a 
LUT with only 15 (LUT 15) quantization levels 
provides sufficient results so that larger LUTs with
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31 or 511 levels are not necessary. These results 
are validated by the binary output results [10] of 
the neural network as well. For every neuron a 
separate LUT is needed on the chip hence, a LUT 
as small as possible is recommendable as men
tioned before. In our case the network consists of 
4 neurons this means that also 4 LUTs are needed.

Table 1. Quality of LUTs (N=12000)

LUT 15 LUT 3 1 LUT 5 1 1

6 a 1 .2E -3 2 .0 7 E -4 4 .7 4 E -6

Figure 4 shows the characteristic of the 
LUT 15 for implementation, which takes all neces
sary modifications, as different input range of the 
RGB-values [0, 255] instead of [0, 1], a  = 10, and 
the new output range [-255, 255], into account. 
This LUT is used for the hidden neurons.

X

Figure 4. Approximation o f tanh

For the output neuron the range of output values of 
the LUT has been reduced to “0” and “1”. So a fur
ther processing unit, a threshold decision-maker, 
can be saved, i.e. the threshold is defined within 
the output LUT.

4. Detection  Results

The evaluation of binary result images of the neu
ral network is based on a comparison between op
timal (used for training) and simulated results by 
using the quality measure

(9)
i j  W

where titj is the pixel of the corresponding output 
reference (teacher) and ritj is the equivalent pixel of 
the computed result image. The value ye is called 
error subsequently.

4.1. Binary Result Images

The binary result image of the ideal network as 
used in software based simulations includes 199 
errors (Figure 5 b). These errors correspond to an 
error rate of 0.702 % with respect to the learning 
sample image (Figure 5 a). The results of the im- 
plementable NNs are slightly inferior to the origi
nal NN. The error values ye= 221 (LUT 15) and 
Ye~ 204 (LUT 511) correspond to an error rate of
0.780 % and 0.720 %, respectively. The modifica
tions applied after the learning phase do not affect 
the performance of the NN.

t

a) sample image b) orig inal, ye=199

t
c) LUT 15, ye=221 d) LUT 511 , ye=204

Figure 5. Binary result images (training pattern)

The results in Figure 5 show that there are a few 
parts marked as belonging to the hand, which defi
nitely do not match. However, these misclassifica- 
tions are of size 1 to 4 pixels in diameter. So these 
errors can be deleted by means of morphological 
operations like opening, erosion and dilation [12]. 
The morphological operations are performed very 
quickly, since they are applied to binary images
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P f
a) Full Frame o f the Training Pattern b) Verification Image 1

у ж

с) Verification Image 2 d) Verification Image 3

Figure 6. Detection results o f full images: Image including training pattern (a), Images including non-trained 
hands (b, c, d)

only. So all regions outside the hand representing 
classification errors can be deleted without affect- 
ing the detection of the hand.

4.2. Generalisation of the Detection Problem

Generally, learning strategies could lead to solu
tions, which only work well for inputs from the 
learning data set whereas other inputs could lead to 
misclassifications. Nevertheless, the neural net
work should be useable for many different images 
of the same acquisition situation and detection al
ways should be possible. This is called generalisa
tion. This aspect can be easily checked by present
ing different images to the neural network and ana
lysing the results.

In Figure 6 a) the binary output of the neural 
network for the full input frame (288x384 pixels) 
of the clipped training pattern is shown. It can be 
seen that the detection of both hands is possible.

In addition, the generalization behaviour has 
been tested with pairs of hands that have not been 
trained. The results achieved by the NN are also 
excellent (Figure 6 b, c, d). Furthermore, the classi
fication errors in each binary output can be deleted 
by morphological operations, which have not been 
applied yet.

4.3. Hardware Results

The results provided by the FPGA realisation of 
the neural network and those given by the original 
MAT LAB® based solution without any modifica
tions applied, differ in less than 0.02% for an im
age of size 288x384.

Certainly, the processing times depend on the 
target device. Processing time defines the time to 
get the result for a whole frame without applying 
morphological operations.

Due to the VHDL entry of the VLSI circuit de
sign the target device can be changed easily. In 
Table 2 the results of two implementations are 
compared. It reflects that as target device not only 
the latest technology is necessary, but that it would 
improve enormously the performance of the detec
tion system. The detection system in terms of the 
neural network can be implemented in a Xilinx® 
xc4013e FPGA as well as in a Xilinx® Virtex® 
xcvlOO. The detection results concerning the error 
>’e are identically. The differences appear in the de
lay time d̂eiay and the processing speed. The delay 
between input signal and corresponding output 
signal differ in about 337 ns between the two reali
sations (Table 2). The processing time tproc for a 
whole image of 288x384 pixels is less than 45 ms

Table 2. FPGA utilization and processing times

Typ̂ e of FPGA xe4013e xcvlOO

CLBs/Slices 574 CLBs 418 Slices

Utilization 99.7 % 34%

Delay fdeiay 408.6 ns 71 ns

Processing time
p̂roc

< 45 ms < 10ms
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for the xc4013 and for the Virtex® implementation 
p̂roc is 4.5 times less, respectively.

Nevertheless, the use of recent technology with 
a hardware overhead is recommended since the 
morphological operations have to be implemented 
additionally and last but not least strategies for sys
tem testing [13] have to be build in as well. This is 
an important issue as this detection system can be 
used as one component in a video-based safety fa
cility. So testing is not only important during de
signing but also during the normal duty to guaran
tee accurate detection and tracking for the whole 
lifetime of the system.

5. Conclusion

In this paper a pretentious detection and track
ing problem is presented, which can be solved in 
real-time by using a neural network. The presented 
NN permits reliable real-time detection combined 
with a very compact network architecture. It is ob
vious that a challenging problem like hand tracking 
cannot be solved completely by simply applying a 
neural network. However, the misclassifications 
can be eliminated by a further % processing step, 
namely binary morphological operations.

A hardware solution using an FPGA has the big 
advantage that the fundamental idea of a NN, the 
parallel information processing, can be used. 
Moreover, a fast update of the FPGA’s configura
tion can be done e.g. with new coefficients, if a 
new training is necessary.

The presented system is only the first step of 
the implementation of a neural network in an 
FPGA. The next step is the integration of the 
hardware into the training phase to speed up the 
learning process and to increase the flexibility of 
the system.
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