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A bstract

The construction of fuzzy decision trees is an 
important way of acquiring imprecise knowledge. 
Fuzzy ID3 and its variants are efficient methods of 
making fuzzy decision trees from a group of 
training examples. This algorithm is used for 
solving a number of practical problems in the 
different fields of human activities. The 
development of this algorithm is introduced in this 
paper. The new class of properties for such 
algorithms is developed with this algorithm. The 
experimental example demonstrates our idea.

1. Introduction

Last time an information theoretic approach to
solve some problems attracts specialists’ attention. 
For instance, enough simple estimations for 
characteristics of mutual relation between values of 
attributes, can be obtained by using this approach. 
In other cases, the information theoretic approach 
can be an original alternative to traditional 
methods and approaches, in particular, when 
solving tasks through decision trees.

The information-theoretic approach [1,2] 
suggests some advantages for learning in formation 
patterns from large sets of imperfect data, and it 
uses tool, based on the Information Theory. The 
measures of information content, may include 
proper information, a joint information, a mutual 
information, a conditional information, and their 
entropy.

Among the applications of mutual information 
approach to decision tree design reported already 
are medical diagnosis, an expert system design 
tool, character recognition, various control 
algorithms based on unification of methods of 
fuzzy logic and information theory. Using an 
information-theoretic approach to data cleaning is 
presented in [3]. For analysis of database, the 
approach has been successfully applied to 
extracting probabilistic rules from pairs of 
interdependent attributes in a database [1] and to 
evaluating reliability of database attributes [4].

In the paper [5] was proposed a general top- 
down mutual information algorithm to design 
decision trees. The author shows that the induction 
of decision trees is an efficient way of learning 
from examples. Many methods have been 
developed for constructing decision trees [6]. 
Fuzzy ID3 algorithm and its variants [7-12] are 
efficient methods of making fuzzy decision trees. 
The fuzzy ID3 can generate fuzzy decision trees 
without much computation. It has the great 
matching speed and is especially suitable for large- 
scale learning problems.

The proposed technique to compute information 
estimation for fuzzy sets includes rules to compute 
entropy and information quantity for fuzzy 
relatives. These rules lie on our theoretical 
investigations in this paper.

The paper is structured as follows. Section 2 -  
explain the formal notation of the mathematical 
model. Section 3 contains short information about 
fuzzy decision trees. Section 4 describes the 
technique of calculation of information measures. 
We show proposed algorithms in Section 5. And 
we demonstrate usage of this algorithm for 
application example in Section 6.

2. N o t a t io n

We use following formal notation of the model

X  -  a given finite set
TVandF(X) - fu z z y  subset and the family of all 

fuzzy subsets 
R= {A i,..., А л } -  attributes o f a relation R
£li = -  groups of fuzzy subsets, corresponds

л \ to an attribute Д  (z= 1,... ,ri)i,Ь i,mj)
A itj  (/=  1,_,mj) -  y-th fuzzy subset o f attribute Д-

M(N)=Y.x6N F(x) -  cardinality o f a fuzzy subsetTV

I(AZJ) -  proper information o f a fuzzy subset
Atj o f attribute Аг 

I(A/2j 2 , A /iji) -  joint information o f jointly specified 
a fuzzy subset o f attribute Aa
and fuzzy subset A^yi of attribute An 

I(A/2,y21А г-1 j  i) -  conditional information o f fuzzy 
subset A i2j 2 o f attribute A& given ano
ther fuzzy subsets An j i of attribute Аг1
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I( A /2 j  2 j А г-1 ,y i) -  mutual information of jointly 
specified fuzzy subsets Aqj2 and 
of attributes Ай and Ai2 respectively 

Н(Аг) -  entropy o f attribute A* as a measure
o f its uncertainty 

H(A/2j 2jAjiji) -  entropy o f jointly specified a fuzzy 
subset Aa j2 o f attribute A*2 and fuzzy 
subset A/i j] o f attribute Аг1 

H(A/2,y2|An,yi) -  -conditional entropy of fuzzy subset
о r Aj2j 2 of attribute A& (or attribute Az2)
(H (A /2|A nji) ) Siven ^ zzy subset Аг1;1 of attribute 

An
I(A/2;An) -  mutual information in attributes An 

about attributes A^

3. Fuzzy L ogic and Fuzzy Decision Trees

An experienced expert looking at a event in a 
real world environment can estimate quickly, and 
with a high degree of confidence the obtained 
information. The expert would define it as „highly 
possible", „not so possible”, „absolutely 
impossible”, etc. The expert can represent these 
empirical characteristics as numerical values. The 
usage of Boolean approach or Multi-Valued Logic 
approach not always gives necessary reliance. It is 
based on the idea of crisp logical approach: some 
attribute values are correct and others are not. For 
example, if the valid range of a numeric attribute is 
{0; 1; 2; 3}, the value of 1.1 is incorrect from the 
crisp logical point of view. The limitations of this 
approach are obvious: a real-world valid range 
may have "flexible" boundaries.

There is another significant drawback of such 
crisp approach to data evaluation: in many cases it 
is against the nature of human beings (excluding 
statisticians, of course). People use their subjective 
feelings, background knowledge and short-time 
memory, rather than any probabilistic criteria, to 
distinguish different data.

For example, we talk about an attribute O utlook  
and we have got 3 possible value of the attribute 
(Sunny, C loudy , Rain). As a rule it is impossible to 
unequivocally evaluate a membership of 
parameter’s significance (Sunny=  1, Cloudy^0 and 
Rain^O). Expert is able to evaluate a membership 
of a fuzzy subset of a pairs (Sunny, Cloudy) or 
{Cloudy, Rain) as (S u n n y-0,8, C lo u d y -0,2 and 
Rain=0) more naturally and more exact.

Thus, using the Fuzzy Logic approach and 
looking at the possibility degree as a fuzzy 
measure seems a more appropriate way to deal 
with real world data.

Consider a directed tree of which each edge 
links two nodes, the initial node and the terminal 
node. The former is called the father-node of the 
latter while the latter is said to be the son-node of

the former. The node having not its fathemode is 
the root whereas the nodes having not any 
sonnodes are called leaves. Consequences

Definition 1. Let Ц  с  F(X) (1 < i < n) be n 
given groups of fuzzy subsets, with the property 
\Qi\ >1. Fuzzy decision tree is a directed tree 
satisfying [13]
• each node of the tree belongs to F(X);
• for each not_leaf, L, whose all son-nodes 

constitute a subset of F(X) denoted by Г, there 
exists i (1 <i<n) such that Г = 0 ; п  L;

• each leaf corresponds to one or several values 
of classification decision.

Each group of fuzzy subsets, £lh corresponds to 
an attribute and each fuzzy subset corresponds to a 
value of the attribute.

A fuzzy decision tree is a generalization of the 
crisp case. The paper [13] gives a comparison 
between fuzzy decision trees and crisp ones 
(fig. 1). The fuzzy decision tree, regarded as a 
generalization of the crisp case, is more robust in 
tolerating imprecise information.

Crisp Decision Tree Fuzzy Decision Tree
Nodes are crisp 

subsets of X
Nodes are fuzzy 

subsets o f X

If N  is not a leaf and {Щ  is the family 
of all sonnodes of N, then ...

L v N i = , N uJV, < z N  J

A  path from the root to a leaf con*esponds to ...

a production rule a fuzzy rule with some 
degree of truth

An example remaining to be classified matches...

only one path in the 
*- tree

can match several 
paths in the tree

The intersection of subnodes located on the layer ...

is empty can be nonempty

F igure  1. A comparison between the fuzzy 
decision tree and the crisp case

Let there be N  training examples and n 
attributes R = (Ai,...,A„). For each attribute Az 
(1 <i<n) exists group of fuzzy subsets П/. We 
assume that each group is a set of mt (nii >2) values 
of fuzzy subsets A/)b...,A U„H. Consequently, = 
(Л-i, 1 j • • • j A-ij, . . .  Ai,m) ‘

A subset l a  R of input attributes ( \I\ >1): This 
is a subset of attributes that are assumed to be 
initial datas and can be used as initial variables for 
target attributes (see next).
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A subset О a  R of target (output) attributes ( \0\
> 1). Our model is aimed to detecting the values of 
target attributes, based on the information values of 
these attributes and the input attributes.

The following constraints are imposed on the 
partition of ours model:
• I n  О =0, i.e., the same attribute cannot be 

both an input and a target attribute.
• I u  О с  R; i.e., some attributes are allowed to 

be neither input, nor target attributes.

Example 1. Consider tabl. 1. Each column 
corresponds to a fuzzy subset defined on

X={ 1,2,3,...,16}, for instance, sunny = 0.9/1 +
0.8/2 +0.0/3+ ...+ 1.0/16.

Five attributes are as follows Я=(АьА2,А3, 
A*, As) = {Outlook, Temperature, Humidity, Wind 
and Games).
Outlooks{Ai,i, Ab2, Ai53}={Sunny, Cloudy, Rain), 
Temperature^{A2i\, A.2,i, A2j}~{Hot, Mild, Cool), 
Humidity = {Аз,ь Аз,:2}={Humid, Normal},
Wind = {A4J, Pu,,2}^{Windy, Not_windy}.
Games = {A5)b A5,2, A5>3}={Volleyball, Swimming 

and WeightJifting}.
I — {Outlook, Temperature, Humidity and Wind}.
О -  {Games}.

Table 1: A small training set

No OutLook Temperature Humidity Windy Game* 1

Sunny Cloudy Rain Hot Mild Cool Humid Normal Windy Not win V s w
1. 0.9 0.1 0.0 1.0 0.0 0.0 0.8 0.2 0.4 0.6 0.0 0.8 0.2
2. 0.8 0.2 0.0 0.6 0.4 0.0 0.0 1.0 0.0 1.0 0.59 0.41 0.0 :
3. 0.0 0.7 0.3 0.8 0.2 0.0 0.1 0.9 0.2 0.8 0.3 0.6 0.1 ,
4. 0.2 0.7 0.1 0.3 0.7 0.0 0.2 0.8 0.3 0.7 0.9 0.1 0.0 1
5. 0.0 0.1 0.9 0.7 0.3 0.0 0.5 0.5 0.5 0.5 0.0 0.0 1.0
6. 0.0 0.7 0.3 0.0 0.3 0.7 0.7 0.3 0.4 0.6 0.2 0.0 0.8 I
7. 0.0 0.3 0.7 0 .0 0.0 1.0 0.0 1.0 0.1 0.9 0.0 0.0 1.0
8. 0.0 1.0 0.0 0.0 0.2 0.8 0.2 0.8 0.0 1.0 0.7 0.0 0.3
9. 1.0 0.0 0.0 1.0 0.0 0.0 0.6 0.4 0.7 0.3 0.2 0.8 0.0 *
10. 0.9 0.1 0.0 0.0 0.3 0.7 0.0 1.0 0.9 0.1 0.0 0.3 0.7
11. 0.7 0.3 0.0 1.0 0.0 0.0 1.0 0.0 0.2 0.8 036 0.64 0.0
12. 0.2 0.6 0.2 0.0 1.0 0.0 0.3 0.7 0.3 0.7 0.7 0.2 0.1 j
13. 0.9 0.1 0.0 0.2 0.8 0.0 0.1 0.9 1.0 0.0 0.0 0.0 1.0
14. 0.0 0.9 0.1 0.0 0.9 0.1 0.1 0.9 0.7 0.3 0.0 0.0 1.0
15. 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.8 0.2 0.0 0.0 1.0 •
16. 1.0 0.0 0.0 0.5 0.5 0.0 0.0 1.0 0.0 1.0 0.57 0.43 0.0

* Three symbols, V9 S and Wb denote three sports to play: Volleyball, Swimming and Weight Jifting, respectively.

4. Information-Theoretic Learning

Information Theory [14] suggests a 
distribution-free modeling of conditional 
dependency between random variables of both a 
discrete and a continuous nature. If nothing is 
known on the causes of a random variable X, its 
degree of uncertainty can be measured by its 
unconditional entropy.

4.1. Information in Fuzzy Subset

The main terms and expressions related with 
notations such as proper information, joint 
information, condition information and mutual 
information for a fuzzy subset are introduced in 
this part. In this part we generalize indicated in 
paper [15-16] basic information terms of crisp case 
on case fuzzy subset. These terms allow to 
evaluate influence of an attributes on another ones.

Definition 2. The proper information of a fuzzy 
subset А of attribute А/ is

I(A/j) = log M(A;)/M(A/fy) bits, (1)

where log denotes the base 2 logarithm;
(/= l , . . . ,n; j=  1 ,...,т().

Definition 3. The joint (the unconditional) 
information of a fuzzy subset Ai2j 2 ° f attribute An 
and fuzzy subset Anji of attribute An is given by

I(Anj bA/2j 2 )= log (M(An) /M(Aa,y 1 x A/2j 2))5 (2)

Definition 4. The condition information of a 
fuzzy subset Ai2j 2 of attribute Ai2, given another 
fuzzy subset Aiiji of attribute An is

I(A/2J2 |A/iji) =  I(AzljbAz2,y2 ) - I (A /ij i )  =  (3) 

= log ((М(Ап)хМ(А,г/1))/М (А ,и1 ж Aa.j2) l
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The condition information describes the 
uncertainty of fuzzy subset Ai2J2 when another 
fuzzy subset Аид, is given.

Definition 5. The mutual information of jointly 
specified fuzzy subset Ai2j 2 of attribute Ai2, and 
fuzzy subset A/iji of attribute AzI satisfies the 
equations

I(A/i(yi; A/2j 2) “  (4)

= I(A n ,y i)  +  I ( A j2j 2) " I ( A Z'2J2 5 A / i j i )  =  I (A i2 j2; A/1 J i )

or
I(A / ijb  A/2jy2) =  I(A zi yi) - I(A/iji |A /2j2) =

“  I (A |2 j 2) - I ( A z'2j 2 j А / 1 j  1) I (A /2j 2? A /] j j ) .

The following example is illustrated these formulas.

Example 2. For a small training set (tab.l) used
(l)-(4) obtain:
l(Sunny)~

= \og{M(Outlook)rbA(Sunny))~\og{ 16/6,6)= 1,278; 

1(F) = \og(M(Game)/M( F))=log( 16/4,52)= 1,824;

I(F, Sunny)=
=\og(M(Outlook)/M( VxSunny))=log( 16/0,11 )=3,141;

l(V\ Sunny)= I(F, Sunny)-l{Sunny)= 1,824-1,278= 0,546;

I(F; Sunny) = 1(F) + I^wwwy) - I(F,6^/i«y) =
1,824 + 1,278 > 3,141 = -0,038.

4.2. Entropy and Conditional Entropy

Let’s generalize previous evaluations for sets of 
the values of attribute. In other words we shall 
calculate their expectation. For this purpose we 
shall generalize concept information to concept 
entropy. Consider the using these estimations for 
fuzzy subsets.

In communication engineering, the entropy of 
Ал represents the minimum expected number of 
bits (if we used the base 2 logarithm) required to 
transmit a value of An- The entropy reaches its 
maximum value, when An is uniformly distributed 
in its domain. Entropy is different from variance 
by its metric-free nature: it is dependent only on 
the probability distribution of a random variable 
and not on its values. This makes the entropy a 
universal measure of valued and variables.

Definition 6. The entropy of a attribute A, is 

b W - i ; : ,  M(Ay)/M(A,-) x I(Ay), (5)

where I(A/)7) see in Eq.(l).

Entropy of output attribute is an average 
amount of information, which should be extracted 
for determination of this output attribute. Entropy 
of input attribute is an average amount of

information, which is extracted when we have 
detected value of this attribute.

Definition 7. The joint entropy of attributes Ai2 
and An is

H (Azl , A/2 ) — (6)

=  Z X ,  M<A'V1 * А,-2J2 )/M(A/i)xI(A,i>yiA,-2.y2),

where l^AnjiAaji) see in Eq.(2).
Definition 8. The conditional entropy of 

attribute Ai2 given another attribute A n is

H (Ад |An) =  H(Alb A a) - H(An). (7)

This entropy is average uncertainty of values of 
attribute A/2 given attribute A n. The conditional 
entropy of attribute Ai2 given fuzzy subset Anji of 
attribute Ал is

H (Ад I Ai\j\) — (8)

= 1L*p=i ̂  (А/1 j-1x A22 j г)/М (An)xM(An j  j) x I ( A/2j 2 I A, ij\),

where I(Azljl|Az2j 2) see in Eq.(3).

The association between two fuzzy subset Anji 
of attribute An and fuzzy subset Ai2j 2 of attribute 
Ai2 (the mutual information) is defined by the 
Information theory as a decrease in entropy of 
A aj2 as a result of knowing Anji (and vice versa), 
namely the uncertainty of value of fuzzy subset 
Afij] of attributes Ai2 when value of attributes An 
is given.

Definition 9. The mutual information between 
attributes Ai2 and An

I(An; Afl) = H(A/2) - H(Ai2| An) = (9)

= H(An)-H(A/j! Ai-2)=I(A,-2; An) 

or I(An; Aa) = H(Aa) + H(An) - H(An A 2)=

Z y w l j l ,  M ( A n ,y .x  A,-2j 2 ) / M ( A , i ) х 1 (А д ,;2; А , , я ) ,

where I(Anji; Ai2j 2) see in Eq.(4).

Mutual information in attribute An about 
attribute Ai2 and vice versa, that reflects the 
influence of attribute Ал on the attribute Ai2 and 
conversely, the influence of attribute Ai2 on 
attribute An.

The difference between mutual information and 
correlation coefficient resembles the difference 
between entropy and variance: the mutual 
information is a metric-free measure, while the 
correlation coefficient measures a degree of 
functional (e.g., linear) dependency between values 
of attributes.
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Example 3. For a small training set (tab .l) used
(5)-(9) obtain:
H(Outlook) = M(Sunny)/M(Outlook) x l(Sunny) +

+ M(Cloudy)/M(Outlook) x l(Cloudy)+
+ M(Rain)/M(Outlook) x I (Rain) = 1,5419

H(Game) = M (V)M (Gam e)xl(Vym (S)/M (Gam e)xI(S)+  
+ M(W)/M(Game) x I( W) =  1,5424

H(Game, Outlook) =
Z  £ M (A«li,1xA,-2j-2)/M(Ail)xI(Ail,bA,2,2)=2)898

A,-1;i e G a m e  A /2 y j e  O u tlo o k

H(Game\Outlook) -  H(Game,Outlook) - 1(Outlook)=
=  2,898 -  1,5419—1,356;

H(Game|*Siwny) =

~ ^  M  (AnjjxAI-2i/-2)/M(A,-i)xI(Ai-il/i>Аад) ~
A n j {eGam e

=0,211+ 0,212 + 0,209 = 0,632

\(Game; Outlook) = H(Game) - H(Game| Outlook) —
= 1,5424- 1,356=0,186.

In more detail see these results in tabl.2.

Table 2. The condition information and condition entropy

I (Game | Af) H (Game | A,-)
Game V S W V S W

Ai = OutLooolc-----------------------
Sunny
Cloudy
Rain

1,863
1,318
3,244

1,111
2,545
3,968

1,932
1,226
0,268

0,211 
0,192 

si),077

0,212
0,158
0,057

0,209
0,190
0,05Q,

10,632

H (Game Outlook) = ‘1,356
A2= Temperature

Hot
Mild
Cool

1,836
1,408
2,620

0,926
2,705
4,356

2,370
1,090
0,343

0,196
0,186
0,114

0,186
0,145
0,057

0,175
0,179
0,073

£0,557 
E0,510 
SO,244

Н(Game | Temperature) - 1,311
A3 = Humidity

Mild
Cool

2,247
1,639

1,560
2,128

1.152
1.152

0,166
0,342

0,185
0,317

0,181
0,337

H(Game Humidity) = 1,528 |
A4= Windy

Windy
NotWindy

2,966
1,365

2,128
1,767

0,637
1,654

0,154
0,315

0,198
0,308

0,166
0,312

H(Game [ Windy) - 1,453

5. The Algorithm  of the Fuzzy Decision 
Tree Design

There are two points in the process o f  
constructing fuzzy decision trees. One is the 
selection o f  expanded attributes. They are such 
attributes that according to values o f  attributes 
(which are fuzzy subsets) trees are expanded at the 
nodes considered. The other is the judgment on 
leaves. N odes are usually regarded as leaves i f  the 
relative frequency o f  one class is greater than or 
equal to a given threshold value.

A  general learning algorithm for construction 
fuzzy decision trees can be described as follow s.

Input D ata: The small training set R. Where A z € I  
(z= l,...,w ), A* € O.

Output d a ta : Fuzzy decision trees.

FDI-Algorithm (R)
{ А Т Т Ы В = {А ь ...,Ап};

Do W hile ATTRIB *  0
{ Calculate H(A*]A/) for V А,- e  I  using Eq. (7); 

Select the attribute A, according to information 
criterion - minimal entropy H(A* |Af)—>min; 

A ssign  chosen attribute A, to current tree node 
o f  the level fuzzy decision trees;

Calculate values o f  output attributes: 
min^i (I(A2j ) for V fuzzy subset o f  A*); 

ATTRIB = ATTRIB \A<;
}

6. A pplication Example

Let us explain the technique o f  computations by  
the example below.

Example 4. Input D ata: The small training set, 
contains 4 input attributes {O utlook , Tem perature , 
H um idity , Wind) (w= 4) and 1 output attribute 
Game (tabl. 1).

Output d a ta : Fuzzy decision trees 

FDT-Algorithm

Step L  Calculate the condition information and 
condition entropy between input attributes and 
the output attribute, in accordance with 
Eqs.(5-9), see tabl. 2.

Step  2. Choose the attribute А/ with minimal 
entropy:

тт^1^(ЩСате\А()~гтп(\ ,36; 1,31; 1,52; 1,45)= 1,31

H ( Game\ Tem perature) =  m in ).
W e have to choise A 2= Tem perature .

Step  3. A ssign  chosen attribute A 2̂ Tem perature  to 
current tree node o f  the fuzzy decision tree.

Step 4. Calculate values o f  output attributes for 
current level.
min7-=i(I(A2t/)for V fuzzy subset of Aj)=  {0,926; 1,090;0,343}; 

V alrempeream̂ 0,(S) = 2 « > Г 2-°’926=0,526;
V al Tempereatiirê MilclQN') 2 
Vft^Tempereaturê Cooliŷ ) ~ 2

= 2'1,090=0,470;
-j-I{W\Coot) _  2 "0343_ q

Build the first level o f  fuzzy decision tree (see fig.2)
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Figure 2. First level of fuzzy decision tree

Step 5. Repeat Step A - Step A for another attributes 
{Outlook, Temperature, Humidity and Wind}. 
The results are given in tab’s.3-5 and fig.3.

End

Table 3. The condition information and condition 
entropy for the attribute Temperature — Hot.

l(Game\HotyAi) R(Game\Hot,Ad
Game V S W V s W

Ai = Outlook
Sunny
Cloudy
Rain

1,830
1,365
3,184

0,680
1,025
2,614

3,401
3,05:
0,46:

0,123
0,046
0,020

0,10 j 0,077 
0,0410,032 
0,024 0,019

SO,301 
SO,121 
SO,063

H(Game | Temperature = H ot, Outlook) = SO,484
A3 = Humidity

Mild
Cool

2,383
1,471

0,682
1,191

2,435

2,313
0,083
0,106

0,077
0,104

0,082
0,093

H(Game\ Temperature -  Hot, Humidity) - 0,545
A4= Windy

Windy 
Not windy

2,623
1,548

0,916
0,931

1,701
2,905

0,056
0,1324

0,064
0,122

0,069
0,097

Yl(Game\ Temperature = Hot, Windy) = 0,540

Table 4. The condition information and condition 
entropy for the attribute Temperature -  Mild

l(Game\Mild,At) HiGamelMildyAi)
Game V S W V 5 W

Ai = Outlook
Sunny
Cloudy
Rain

1,539
1,238
1,706

2,16( 
3,175 
3,23:

1,21]
1,10:
0,161

0,071
0,087
0,025

0,0 6i 
0,05< 
0,0K

0,070
0,086
0,022

H(Game| Temperature = Mild, Outlook) = 0,502

A3 = Humidity
Mild
Cool

1,322
1,428

3,58:
2,56^

0,95:
1,12:

0,034
0,152

0,0 H
0,12^

0,032
0,147

H(Game\ Temperature — Mild, Humidity) = 0,508

A4= Windy
Windy 
Not windy

2,534
0,878

3,760
2,194

0,40*
2,075

0,069
0,092

0,044
0,092

0,048
0,095

SO,161 
SO,279

H(Game\ Temperature = M ild , Windy) = SO,440

Table 5. The condition information and condition 
entropy for the attribute Temperature=Cool

SO,035 
SO,114 
SO,018 
SO,167

0,508

0,214

A fuzzy decision tree constructed by using this 
algorithm is shown as fig. 3.

Figure 3.Construction fuzzy decision trees 

C o n c l u s io n

This paper investigates the buildind of fuzzy 
decision trees. The actual task for existing 
algorithms for constructing fuzzy decision trees is 
the correct selection of attributes. One of the ways 
is attempt to obtain a small-scale tree via the 
expanded attribute selection and to improve the 
classification accuracy for unknown cases. It is 
possible that the reduction of decision tree scale 
results in the improvement of the classification 
accuracy for unknown cases. An important 
problem is whether or not there exists an exact

Game W
l(Game\Cool,A^ H(Game\Cool,Psi,-)

W
Ai = Outlook

Sunny 2,619 1,737 0,515 0 0,021 0,014
Cloudy 1,411 6,381 0,708 0,058 0,008 0,047
Rain 5,515 8,404 0,032 0,014 0 0,004

H(Game\ Temperature = Cool, Outlook) =

Mild
Cool

A3 = Humidity
2,983 4,356 0,195 0,0392 0
2,430 3,652 0,444 0,074 0,048

0,018
0,054

H(Game\ Temperature — Cool, Humidity) =

Windy 
Not windy

A4 = Windy
5,069 3,314 0,201 0,018 0,039
1,910 6,848 0,463 0,077 0,009

0,021

0,050
¥L(Game\ Temperature = Cool, Windy) :
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algorithm for constructing the smallest-scale fuzzy 
decision tree.

Centering on this optimal problem, this paper 
discusses the representation of fuzzy decision trees 
and presents an algorithm for constructing fuzzy 
decision trees and shows the its accuracy.

The interest on using information theory 
methods was paid comparatively recently to solve 
problems of real world description. The 
information approach makes wider our 
understanding, but its application is connected with 
some difficulties. This approach seems to be 
promising to solve the problem of comparison of 
optimization algorithms for logic functions by 
evaluating each of the strategies through 
information estimations. Ал unique possibility of 
the information approach to form a prognosis for 
the searching algorithms is not studied yet. 
Applying this property can strongly affect on the 
searching algorithms.

In this paper we systematically explain the 
ways to adapt and interpret the information theory 
methods to construct fuzzy decision trees. We 
illustrate various algorithmic, computational 
aspects by a number of examples.

We stand on the position that a fuzzy set of 
attributes has got information, which can be 
estimated numerically. The methods of the 
information theory allow us for such estimations.

We have developed the ways to compute 
information estimations for fuzzy sets. We propose 
the technique to compute information estimations 
for fuzzy sets, which is simple to understand and 
apply. The approach outlined in this paper is a 
basis for further work.
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