Импортерами наушников в Республику Беларусь являются как страны СНГ, так и страны вне СНГ, в том числе некоторые страны ЕС. По данным 2017 г. основную долю импортеров среди стран СНГ занимает Российская Федерация (1316 тыс шт., 18,82 % общего объема импорта), а среди стран вне СНГ основную долю занимает Китай (5649 тыс шт., 80,79 % общего объема импорта). Китай — лидирующий импортер наушников за счет большого количества малых производств наушников на его территории и невысокой стоимости готовой продукции.

Таким образом, в Республике Беларусь наблюдается ежегодное увеличение объемов импорта, рост торговых объектов с наушниками в ассортименте, наушники добавляют в ассортимент уже существующих магазинов. Основными странами-поставщиками наушников в Республику Беларусь являются Российская Федерация и Китай, что обусловлено хорошими политическими и экономическими отношениями с этими странами.

Источники

- 1. Внешняя торговля Республики Беларусь : стат. сб. Минск : Нац. стат. ком. Респ. Беларусь, 2017. 396 с.
- 2. История наушников Shure [Электронный ресурс] // Салон музыкальных инструментов в Москве «Легато». Режим доступа: http://www.legato.su/stati/shure.html. Дата доступа: 29.11.2018.

К.А. Пернепесов, Н.П. Матвейко БГЭУ (Минск)

Научный руководитель — Н.П. Матвейко, д-р хим. наук, профессор

ПРИМЕНЕНИЕ ПОТЕНЦИОМЕТРИЧЕСКОГО МЕТОДА ДЛЯ КОНТРОЛЯ ПОКАЗАТЕЛЕЙ КАЧЕСТВА ДЕТСКОГО ПИТАНИЯ

Для определения содержания нитратов и показателя кислотности рН потенциометрическим методом были приобретены пять образцов детского питания разных изготовителей: «Непоседа» «Морковь»; Вambolina «Чернослив»; «ТопТышка» «Груша»; «Абібок» «Манго»; «Беллакт» «Кабачок».

При определении содержания нитратов руководствовались ГОСТ 29270–95 «Продукты переработки плодов и овощей. Методы определения нитратов». Для определения $\mathrm{NO_3}^-$ использовали нитратомер марки $\mathrm{pNO_3}$ -07, содержащий мембранный ионселективный измерительный электрод ЭМ- $\mathrm{NO_3}$ -07,вспомогательный хлорсеребряный электрод и датчик температуры раствора. Контроль показателя кислотности рН определяли согласно требованиям ГОСТ 26188–2016

«Продукты переработки фруктов и овощей, консервы мясные и мясорастительные. Метод определения рН». Измерение показателя рН проводили на рН-метре марки рН-150М с применением комбинированного электрода, в котором совмещены измерительный стеклянный электрод и хлорсеребряный электрод сравнения.

Для определения неизвестной концентрации содержащихся в исследуемых образцах нитрат-ионов применяли метод построения калибровочного графика в координатах $\mathcal{I}(C) = f(C_{NO_3})$. Калибровку осуществляли путем измерения потенциалов мембранного электрода относительно хлорсеребряного в водных растворах следующих концентраций: 0,0001; 0,001; 0,01 и 0,1 моль/дм³ KNO $_3$. При измерении электродную систему погружали в калибровочные растворы, начиная с меньшей концентрации, и определяли $\mathcal{I}(C)$ как разность потенциалов между индикаторным и электродом сравнения. Показания прибора считывали после прекращения заметного дрейфа показаний.

Определение содержания нитратов проводили в детском питании непосредственно без разведения, добавляя по 1 г алюмокалиевых квасцов на 100 г продукта. Добивались полного растворения квасцов путем перемешивая в течение 5 минут, после чего измеряли ЭДС электродной системы. Концентрацию нитрат-ионов в образцах детского питания установили по градуировочному графику.

При измерении показателя pH комбинированный электрод промыли дистиллированной водой и погрузили непосредственно в анализируемый образец детского питания.

Результаты определения концентрации нитрат-ионов и показателя рН в образцах детского питания представлены в таблице.

Результаты определения содержания нитрат-ионов и величины показателя pH потенциометрическим методом в образцах детского питания

Исследуемый образец	ЭДС, мВ	$C\kappa_{NO}$, моль/дм 3	$C_{NO_3^-}$, MГ/КГ	pН
«Непоседа» «Морковь»	414,5	0,00025	8,0	4,88
Bombolina «Чернослив»	432,0	0,000063	2,0	3,36
«ТопТышка» «Груша»	457,3	0,000008	0,3	3,93
«Абібок» «Манго»	445,7	0,000025	0,8	3,97
«Беллакт» «Кабачок»	405,7	0,00040	1,4	3,82

Согласно требованиям ТР ТС 021/2011 «О безопасности пищевой продукции», количество нитратов в детском питании на фруктовой основе, за исключением содержащих бананы и клубнику, не должно превышать 50 мг/кг, а в детском питании на овощной и фруктово-овощной основе, а также для содержащих бананы и клубнику — 200 мг/кг. Ни один из исследованных образцов не превышает требования ТР ТС 021/2011 по содержанию нитратов.

В детском питании содержание pH не нормируется. По полученным результатам можно сделать вывод, что наиболее кислую среду (pH = 3,36) имеет образец N 2 (Bombolina «Чернослив»), а менее кислую — образец N 1 («Непоседа» «Морковь») (pH = 4,88).

Ю.А. Подобед, В.П. Жуковская, В.С. Францкевич БГЭУ (Минск)

Научный руководитель — Е.В. Франко, канд. техн. наук, доцент

РАДИОЛОГИЧЕСКИЙ КОНТРОЛЬ ДЕРЕВЯННЫХ ИЗДЕЛИЙ

В связи с экологической ситуацией в мире, и особенно в Республике Беларусь, радиологический контроль является неотъемлемой частью экспертного контроля изделий из древесины. Исходя из тенденции по снижению, зараженность продуктами распада радиологических веществ наблюдается в очень малых количествах.

Радиологический котроль — контроль за соблюдением норм радиационной безопасности и основных санитарных правил работы с радиоактивными веществами и иными источниками ионизирующего излучения, а также получение информации о радиационной обстановке на радиационно опасном объекте и в окружающей среде и уровнях облучения людей [1].

Радиационный контроль древесины проводится:

- 1) в лесхозах с территориями лесного фонда, отнесенными в установленном порядке к зонам радиоактивного загрязнения;
- 2) при радиационном обследовании лесосек в лесных кварталах с плотностью загрязнения почв цезием 137 37 кБк/м² (1 Ки/км²) и более;
- 3) при производстве древесного топлива дров (колотых), щепы топливной, топливных гранул (пеллеты, брикеты);
- 4) при производстве пилопродукции из древесины, заготовленной в зонах радиоактивного загрязнения.

В древесине контролируют содержание радионуклида цезий-137 для сравнения с республиканскими допустимыми уровнями (РДУ/ЛХ-2001) [2].

Контроль радиоактивного загрязнения осуществляется в соответствии:

- 1) с правилами ведения лесного хозяйства на территориях, подвергшихся радиоактивному загрязнению в результате катастрофы на Чернобыльской АЭС [3];
- 2) правилами контроля радиоактивного загрязнения в системе Минлесхоза.

Подтверждение радиационной безопасности. На сопроводительных документах к партии отгружаемых лесоматериалов ставится