вставленный исходный документ необходимо заменить на документ с суммами в формате чисел;

• проверка на формат даты: проверка на то, что даты в исходном документе имеют формат даты. При появлении сообщения об ошибке проверьте, что даты в документе имеют следующий формат: «DD.MM.YYYY». При необходимости обновите исходный документ.

Для принятия оперативных управленческих решений была разработана и автоматизирована система управления производительностью труда на базе MS Excel.

Разработанная система позволяет производить расчет, анализ и выявлять резервы роста производительности труда.

В целом для работы с автоматизированным программным обеспечением требуется один специалист — экономист. Сокращение трудозатрат составит 90 %, а также появится возможность анализа и определения резервов роста производительности труда и принятия оперативных управленческих решений.

Литература

- 1. Фолежинский, А. Г. Производительность труда в организации: расчет и оценка факторов / А. Г. Фолежинский // Планово-экон. отд. 2015. № 5 (143). С. 19–31.
- 2. Ashenfelter, Orley C. Handbook of Labor Economics / Orley C. Ashenfelter.— Amsterdam, 2012. 881 p.
- 3. *Bellante*, *D*. Labor Economics Choice in Labor markets / D. Bellante.— Cengage Learning (Emea) Ltd, 2013. 562 p.

http://edoc.bseu.by:8080/

СНИЛ «Экономическая кибернетика» **Е.Ю. Бойсина, А.П. Семенюк, А.Г. Стычневский** Научный руководитель — А.А. Ефремов

ЭКОНОМИКО-МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОПТИМИЗАЦИИ СЕМЕЙНОГО ПРИУСАДЕБНОГО УЧАСТКА

Целью работы является построение эффективной модели распределения семян и удобрений по полям семейного приусадебного хозяйства. При этом учитываются различные факторы: ограниченность посевных площадей, необходимый рацион питания для среднестатистического человека, возможность посадки цветов и аренды дополнительной техники, ограниченный объем трудовых ресурсов и т.п. При этом основным математическим инструментом, с помощью которого находится оптимальное решение и вектор значений управляемых переменных, является симплекс-метод.

В мире насчитывается около 570 млн ферм, из них 500 млн являются семейными хозяйствами, на которые приходится более 80 % всего мирового продовольствия в стоимостном выражении [1]. Семейное фермерское хозяйство — это дача, личное приусадебное или крестьянское фермерское хозяйство, где семья трудится вместе ради выращивания урожая.

Следует отметить, что в Республике Беларусь данная категория агропромышленного комплекса на настоящий момент далеко не полностью раскрыла свой потенциал. Одной из главных причин сложившейся ситуации является высокий риск ошибки и трудность расчета оптимального состава культур из множества вариантов. Математические методы позволяют решить данную проблему с помощью эффективных математических моделей и использования прикладных компьютерных программ, выполняющих длительные для ручного счета расчеты за считанные секунды.

Методика построения оптимизационной модели состоит в том, чтобы экономическую сущность задачи представить математически. В нашем случае тип модели можно обозначить, как задача планирования рациональных покупок продуктов питания (задача о диете) [2]. Задачи о рациональном питании решаются в условиях ограниченного ассортимента, товарных запасов, стоимости, суточных норм потребления питательных веществ и их содержания в продуктах.

В ходе исследования был разработан вариант оптимизационной модели. Пусть существует набор овощей x_i и цветов z_k , который можно посадить на огороде:

```
x_1 — количество белокочанной капусты, кг;
```

 x_2 — количество цветной капусты, кг;

 x_3 — количество помидоров, кг;

 x_4 — количество огурцов, кг;

 x_5 — количество моркови, кг;

 x_6 — количество свеклы, кг;

 x_7 — количество лука, кг;

 x_8 — количество кабачков, кг;

 x_9 — количество перца, кг;

 x_{10} — количество петрушки, кг;

 x_{11} — количество редиса, кг;

 x_{12} — количество картофеля, кг;

 z_1 — количество роз, шт.;

 z_2 — количество тюльпанов, шт.;

 z_3 — количество лилий, шт.,

 z_4 — количество пионов, шт.,

 z_5 — количество кустов ландышей, шт.;

 z_6 — количество герберов, шт.;

 z_7 — количество кустов анютиных глазок, шт.

Перед фермерами может встать вопрос: выгодно ли арендовать или купить трактор для посевных работ? Главное, что может дать трактор — это вы-

сокую производительность. Применение его позволит не только сократить время работы, но и улучшить качество ее выполнения. Однако выгодно ли это с материальной точки зрения определить трудно без специальных расчетов. Ввиду этого было сформулировано ограничение модели, которое сравнит денежные затраты с использованием трактора и без него и определит более выгодную альтернативу. — булева переменная, определяющая необходимость покупки трактора для хозяйства. Система ограничений имеет вид:

$$\begin{cases} f(x) = \sum_{i=1}^{n} d_i(c_i - x_i) + s_i + g_i + r_i + u \cdot tr \to \min \\ \sum_{i=1}^{n} a_{1i} x_i \leq b_1 \\ \sum_{i=1}^{m} a_{(2-4)i} x_i \geq b_{(2-4)} \\ \sum_{j=1}^{m} a_{5j} (1 - e \cdot tr) \leq b_5, m = n+1 \\ \sum_{k=1}^{l} q_k z_k \leq P \\ \frac{q_k z_k}{\sum_{j=1}^{l} q_k z_k} \leq p \\ \sum_{j=1}^{l} q_k z_k \\ x_i \leq v_i \\ x_i, z_j > 0, z_j \longrightarrow \text{целое, } tr \longrightarrow \text{ бинарная} \end{cases}$$

Здесь целевая функция состоит из суммы следующих значений:

- 1. Разница между средней нормой потребления семьей овощей (c_t) и выращенным количеством (x_t), умноженная на среднюю цену за килограмм (d_i).
- 2. Расходы на покупку семян (s_i). Они рассчитываются как произведение расходов семян на 1 м² и цены за 100 шт., деленное на 100.
- 3. Расходы на органические удобрения для выращивания культур (g_i) . Они рассчитываются как сумма расходов органических удобрений на 1 m^2 , умноженных на количество выращиваемых культур. Данная сумма еще умножается на цену удобрений за один килограмм, чтобы привести значение в денежный эквивалент.
- 4. Расходы на неорганические удобрения: калийные, азотные и фосфорные, значение которых рассчитываются аналогичным образом (r_i) .
- 5. Расходы на аренду трактора для обработки почвы (u), которые рассчитываются как договорная цена аренды, умноженная на бинарную переменную t:

Первое ограничение накладывается на площадь, которую занимает 1 килограмм культуры и одно растение каждого вида. Второе, третье и четвертое неравенства устанавливают минимальную границу потребления белков, жиров и углеводов соответственно. Пятое ограничение — на затраты труда по выращиванию культур и цветов. Коэффициенты устанавливаются с помощью экспертных оценок, их значение уменьшается при аренде трактора на e^{-9} . Следующее ограничение показывает, какие цветы более привлекательны для выращивания. Данные коэффициенты q_k были названы единицами красоты и счастья: чем более привлекательный цветок, тем больше данный коэффициент. Также введены ограничения на посадку цветов: должно быть посажено

не менее р видов. Далее добавлены ограничения на среднее потребление культур в год (v) и ограничения на переменные.

Коэффициенты при переменных выращиваемых продуктов представим в виде таблицы.

Коэффициенты при переменных выращиваемых продуктов

1 1											
Показатель	Капуста	Капуста цветная	Поми- дор	Огурец	Мор- ковь	Свекла	Лук	Кабач- ки	Перец	Редис	Карто- фель
Расходы	0,143	0,09	0,66	0,348	0,425	0,12	0,288	0,106	0,58	0,35	0,01
Площадь	0,25	0,67	0,33	0,5	0,2	0,2	0,5	0,333	0,67	0,5	0,2
Белки	0,018	0,025	0,006	0,008	0,013	0,015	0,014	0,006	0,013	0,01	0,02
Жиры	0,001	0,003	0,002	0,001	0,001	0,001	0	0,003	0	0,00	0,004
Углеводы	0,047	0,054	0,042	0,028	0,069	0,088	0,104	0,046	0,053	0,03	0,181
ч _{елч} /м²	3	1,8	1,2	2,1	1,08	1,5	1,98	1,2	2,4	2,16	2,34
Расходы на покупку	0,55	1,3	2,8	1,5	1,58	0,56	1,2	1,8	5,9	1,5	1,7
Расход се- мян на 1 м ²	6,5	5	3,3	4,35	250	47	80	1,33	5,8	70,5	20
Цена семян (за 100 шт.)	2,2	1,8	20	8	0,17	0,26	0,36	8	10	0,5	0,05

Получено следующее оптимальное решение: необходимо высадить 4 килограмма цветной капусты, 8 кг помидоров, 6 кг огурцов, 8 кг моркови, 4,85 кг свеклы, 6 кг лука, 6 кг кабачков, 3 кг перца, 3 кг редиса и 120 кг картофеля. Наиболее привлекательными цветами для рассадки согласно результатам моделирования оказались ландыши, которых следует высадить 27 кустов, а также в оптимальный план вошли 14 кустов гербер, 13 кустов анютиных глазок и 3 тюльпана. В ходе решения выяснилось, что целесообразно арендовать трактор для снижения трудозатрат.

Расходы на семена оказались равными 58,5 бел. р., площадь, которую занимает огород, не включая траншеи и дорожки, — 47,4 м². За год от овощей семья получит 2,97 кг белков, 0,59 кг жиров и 24,58 кг углеводов. От высаженных растений семья получит 100,6 единиц счастья. Все нормы потребления семьи овощей в год равны среднему потреблению по статистическим данным. Однако семье выгодно вырастить 4,85 кг свеклы (норма потребления которой составляет 6 кг в год), а недостающую часть закупить. Белокочанную капусту и петрушку вовсе выгоднее будет не высаживать, а полностью покупать в магазине либо на овощном рынке. На выращивание данного количества культур семья потратит 26,22 бел. р. на органические удобрения, а 3,66 бел. р. — на неорганические. Суммарные минимальные затраты на за-

купку дополнительных овощей равны 12,55 бел. р. Данное решение является оптимальным с позиций экономико-математического моделирования.

Построенная модель принимает во внимание не только имеющиеся в приусадебном хозяйстве посевные площади, но и возможность приобретения некоторых культур в магазине либо на овощном рынке. Представленный в данном проекте алгоритм позволяет находить идеальное соотношение собственных и приобретенных овощей, что позволяет делать акцент на определенных видах сельскохозяйственных культур.

Полученная модель позволяет эффективно и долгосрочно планировать рассадку различных культур на семейном приусадебном участке. Среди достоинств стоит отметить гибкость модели — при необходимости пользователь может вручную изменять цены на продукты и аренду техники, количество человек в семье и регулировать собственные предпочтения в рационе, дальнейшие расчеты полностью автоматизированы. Таким образом, данная модель является эффективной и может быть успешно применена на практике при планировании семейного приусадебного участка.

Литература

- 1. Сельское и лесное хозяйство годовые данные [Электронный ресурс] // Национальный статистический комитет Республики Беларусь. Режим доступа: http://www.belstat.gov.by/. Дата доступа: 14.03.2017.
- 2. *Кузнецов*, А. В. Высшая математика. Математическое программирование: учебник / А. В. Кузнецов, В. А. Сакович, Н. И. Холод. Минск: Выш. шк., 1994. 286 с.

СНИЛ «ЭКОС — экономика, качество, окружающая среда» **А.Ю. Соловей, Е.А. Лаврецкая, А.А. Бурсевич** Научный руководитель — кандидат экономических наук Н.А. Смольская

НЕКОТОРЫЕ ПОДХОДЫ К ОЦЕНКЕ СООТВЕТСТВИЯ ЭКОНОМИКИ ПРИНЦИПАМ «ЗЕЛЕНОЙ» ЭКОНОМИКИ

В статье рассматриваются понятие «зеленой» экономики и системы показателей оценки соответствия экономики региона принципам «зеленой» экономики. В ходе исследования на основе анализа отечественного и зарубежного опыта авторами разработана система показателей оценки соответствия принципам «зеленой» экономики, а также алгоритм анализа предложенных показателей, который рассматривается на примере Республики Беларусь.

Общеизвестны экологические проблемы, связанные с высокой антропогенной нагрузкой существующей модели экономики на окружающую среду: высокая ресурсоемкость, деградация земель, загрязнение атмосферного воз-