http://edoc.bseu.by



less than knapsack capacity, it is included to the collection. We proceed with adding
items until the knapsack capacity is exceeded. In this moment backtracking is
applied. This means, that we return back to the previous tree level and proceed with
non-including this item to the collection. This process continues until the tree bottom
(solution about the l‘ast item) is riched. Here again backtracking is applied and we
select a branch, which wasn’t treated yet.

This method is too long, because an algorithm treats also subtrees, which can’t
improve the cost of the solution, already found. For reducing this steps the upper
bound is used. After each operation of including (or non-including) an item to the
knapsack the upper bound for particular subtree is found. Upper bound equals to the
cost sum of all included items and éll items, which can be added further. So, if
subtree treating wouldn’t improve solution, found till this moment, algorithm will not
treat it. This speeds up a solution.

1. Parallel implementation of the sequential algorithm
Knapsack problem can be parallelized using partitioning method. This means
that binary tree is divided into subtrees and every process treats assigned subtree
(Figure 1).

processor processor 3

rocessor 1
P processor 4

Figure 1
Master process divides a tree into subtrees and passes input parameters to the
slave processes. After that every process treats one part from the tree and returns a
value of its solution. Master process evaluates all solutions and selects the optimal
solution of the problem.

259



Pseudo-codes of master and slave process for 2 processors are as follows:

Master proces: ~ Slave proces:

Read_input_data(); Reap_input_data();
Define_slave_input_params(); Get_input_params_from_the_master();
Send_data_to_slave(); Treat_subtree();

Treat_subtree(); Send_solution_to_the master().

Get_solution_from_slave();
Find_optimal_solution().

2. Experiments
Knapsack problem was solved using Parallel Virtual Machine (PVM) running
under Linux operating system on network of personal computers.
Algorithm described before was corrected and executed on 5 computers. Input
data: n=40, knapsack capacity=266.

Results from the average executing time measuring are shown in figure 2.

-

mno.cxmn-t‘ngtlm[ll
528888558

A8 e b

4. Conclusion

We can see from the figure 2 that executing time for solving of Knapsack
problem became significantly shorter due to parallel processing. But also it is clear,
that dependence between the executing time and the number of computers is not
linear. The reason is as follows: when the number of computers is not equal to n-th
power of 2, the status tree is not divisible to equal subtrees and some of processes

260



have to treat bigger subtrees and consequently need longer time (see differences of
executing times for 1 and 2 computers and 2 and 3 computers). The best results are
achievable when the number of computers is 2", for n>0.

Using of parallel processes for solving time consuming optimization problems is
reasonable and leads to significant improving of executing time. Parallel processes
can be used also in the cases when expensive multiprocessor computer is not
available.

References

Operaén4 analyza, Jaroslav Jana&ek, Zilinsk4 univerzita, 1997

PVM: Parallel Virtual Machine,A.Geist&col. Massachusetts Institute of Technology,
1994

Tebria grafov, Stanislav Paliich, Zilinsk4 univerzita, 2001

www.csm.ornl.gov

www.netlib.org

261





