
USING PARALLEL PROCESSES FOR SOL VING 

ТНЕ КNAPSACK PROBLEМ: 

MarekКDaze 

Penka Martincova 

Department ofinfonnatics, Faculty ofManagement and Infonnatics, 

University of Zilina, Slovak RepuЫic 

Introduction 

One of the most popular proЫems of discrete programming is the Кnapsack 

proЫem Given а set of items, each with cost and value, determine the numЬer of each 

item to include in а collection so that the total cost is less than some given cost and the 

total value is as large as possiЫe. 1Ъis proЫem is known to Ье NP-hard. 

We can express this proЫem as linear programming mode1 as foliows: 

max z = С1 Х1 + С2 Х2 + С3Х3 + ... + CnXn 

under conditions 

Xj е { 0,1 } for j = 1,2, .. .n 

(1) 

(2) 

(3) 

where с 1 , с2 , с3" •• • с0 - are costs of the particular items, which сап Ье stored into the 

knapsack; а 1 , а2 , а3 , .• • а,, - are value of the items; k - Кnapsack capacity; n - а number 

of items, which сап Ье stored in the knapsack; (1) is an object functiop of the 

proЫem; (2) is а condition which ensures that the total cost is less than .the given 

cost; (3) is а condition which e~sures undevisiЬility of the items\ which means that 

bivalent variaЫe х, assigned to the item has а value 1 if an item is included in the 

knapsack or О in the oposite case. 

This proЬ!em is solvaЫe Ьу branch and bounds method, using Ьinary tree. Tree 

branches represent solution of including or non-including the item into the knapsack. 

Sequential solution of this proЫem is as follows: at the beginning the upper Ьound is 

equal to the sum of costs of aJl itmes. As first is processed the first item. If its value is 

258 

http://edoc.bseu.by



less than knapsack capacity, it is included to the collection. We proceed with adding 

items until the knapsack capacity is exceeded. In this moment backtracking is 

applied. This means, that we return back to the previous tree level and proceed with 

non-including this item to the collection. This process continues until the tree bottom 

(solution about the fast item) is riched. Here again backtracking is applied and we 

select a branch, which wasn't treated yet. 

This method is too long, because an algorithm treats also subtrees, which can ' t 

improve the cost of the solution, already found. For reducing this steps the upper 

bound is used. After each operation of including (or non-including) an item to the 

knapsack the upper bound for particular subtree is found. Upper bound equals to the 

cost sum of all included items and all items, which can be added further. So, if 

subtree treating wouldn't improve solution, found till this moment, algorithm will not 

treat it. This speeds up a solution. 

1. Parallel implementation of the sequential algorithm 

Knapsack problem can be parallelized using partitioning method. This means 

that binary tree is divided into subtrees and every process treats assigned sub.tree 

(Figure 1). 

processor processor 3 

processor 4 

Figure 1 

Master process divides a tree into subtrees and passes input parameters to the 

slave processes. After that every process treats one part from the tree and returns a 

value. of its solution. Master process evaluates all solutions and selects the optimal 

solution of the problem. 

259 



Pseudo-codes of master and slave process for 2 processors are as follows: . ,. 
. Master prqces: 

Read _input_ data(); 

Define_ slave _ input_params(); 

Send_ data_ to_ slave(); 

Treat_subtree(); 

Get_solution_from_slave(); 

Find_ optimal_ solution(). 

Slave proces: 

Rea~_input_ data(); 

Get_input_params_from_the_master(); 

Treat_ subtree(); 

Send_solution_to_the master(). 

· 2. Experiments · 

Knapsack problem was solved usjng Parallel Virtual Machine (PYM) running 

under Linux operating system on network of personal computers. 

Algorithm described before was corrected and executed on 5 computers. Input 

data: n=40, knapsack capacity=266. 

Results from the average executing time measuring are shown in figure 2. 

·' number ot _,,,,.,.,. 

Figure 2 

4. Conclusion 

We can see from the figure 2 that executing time for solving of Knapsack 

problem became significantly shorter due to 'Parallel processing. But also it is clear, 

that dependence between the executing time and the number of computers is not 

linear. The reason is as follows : when the number of computers is not equal to n-th 

power of 2, the status tree is not divisible to equal subtrees and some of processes 

260 



have to treat bigger subtrees and consequently need longer time (see differences of 

executing times for 1 and 2 computers and 2 and 3 computers). The best results are 

achievable when the number of computers is 2°, for n>O. 

Using of parallel processes for solving time consuming optimization problems is 

reasonable and leads to significant improving of executing time. Parallel processes 

can be used also in the cases when expensive multiprocessor computer is not 

available. 

References 

Opera~na anal:Yza, Jaroslav J~ek. Zilinski univerzita, 1997 

PYM: Parallel Virtual Machine,A.Geist&col. Massachusetts Institute of Technology, 

1994 

Te6ria grafov, Stanislav Paluch, Zilinski µniverzita, 2001 

www.csmoml.gov 

www.netlib.org 

261 




