http://edoc.bseu.by О ТОЖДЕСТВЕННОСТИ СТАТИСТИЧЕСКИХ МОДЕЛЕЙ

Рутковский Р. А.

к.т.н., профессор кафедры ПМ и ЭК

БГЭУ. Минск

Задачей построения статистической модели является нахождение некоторой функции, "объясняющей" расположение точек в k-мерном пространстве наблюдений, соответствующих последовательным состояниям наблюдаемого (управляемого) объекта.

Можно предложить несколько форм представления статистической модели содержащей подгоночные параметры.

В наиболее общем виде статистическая модель может быть задана некоторым достаточно оператором, в общем случае нелинейным

$$\Phi(a,x) = 0, \tag{1}$$

здесь $a = (a_1, a_2, \dots, a_n)$ — вектор-строка параметров, определяемых из условия минимума критерия Z(a), например суммы квадратов невязок

$$\min_{a} \sum_{t=1}^{m} \Phi^{2}\left(a, x^{(t)}\right).$$

Статистическая модель, линейная относительно подгоночных параметров, может быть представлена в следующем виде

$$f_0(x) = af , (2)$$

где вектор-столбец линейно независимых на множестве наблюдений X функций

$$f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{bmatrix}$$

называется базисом модели.

Соотношения (1), (2) являются неявной формой задания моделируемого показателя как одной из компонент вектора состояния.

В случае, когда одну из компонент вектора состояния определяют как моделируемый показатель x_M , а остальные компоненты — как "объясняющие", получаем линейную относительно параметров модель, представляющую моделируемый показатель в явном виде

$$x_{M} = af, (3)$$

что является частным случаем модели (2), когда $f_0(x) = x_M$. Скалярную функцию f_0 можно считать обобщенным (синтетическим) показателем состояния моделируемого объекта.

Модели (2), (3) являются частным случаем модели (1). Они удобны в применении тем, что вычисление оптимальных параметров по критерию взвешенных наименьших квадратов

$$Z(a) = \sum_{t=1}^{m} \rho_{t} \left(x_{M}^{(t)} - a f^{(t)} \right)^{2}$$
 (4)

приводит к решению системы нормальных (линейных) уравнений, которые запишем в следующем виде

$$Ma = b. (5)$$

Обозначим через $H = \left(h_y\right)_{m \times n}$ информационную матрицу, элементами которой являются значения базисных функций, $h_y = f_j(x^{(i)})$. Тогда матрица M системы нормальных уравнений (5), называемая матрицей Грама, может быть вычислена как

$$M = H'H$$

при условии, что вес наблюдений в (4) тождественно равен 1.

Для нестационарного временного ряда система нормальных уравнений (4) может быть вычислена по формулам Гаусса, с учетом применения функции веса $\rho(t) = \rho_t \ge 0$, $t = \overline{1,m}$,

$$h_{ij} = [f_i, f_j] = \sum \rho_i f_i^{(i)} f_j^{(i)},$$

$$b_i = [f_0, f_i].$$
(6)

Значение критерия качества аппроксимации (таких как взвешенных наименьших квадратов, наименьших модулей и др.) однозначно определяется невязками, свойства которых исчерпывающим образом определяют качество статистической модели объекта.

Свойство ортогональности функций базиса на совокупности X влечет взаимную независимость компонент вектора параметров a. В случае применения метода наименьших квадратов ортогональнось базиса приводит к диагональной матрице Грама, что не является существенным в условиях компьютерной обработки, поскольку решение системы линейных уравнений, порядок которой редко превосходит 10, относится к простейшим вычислительным процедурам. Более существенным является то, что в случае ортогональности базиса не требуется пересчета параметров других функций при добавлении нового слагаемого в статистическую модель. Однако для достижения свойства ортогональности базиса как правило требуется специальная процедура нормирования исходной совокупности, что при статистическом моделировании поглощает все преимущества связанные с ортогональностью.

Определение.

Статистические модели называются тождественными если для любых допустимых значений вектора x они дают совпадающие значения моделируемого показателя $x_{\rm M}$.

Справедливо следующее утверждение.

Если имеются два базиса одинаковой размерности

$$f(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \\ \vdots \\ f_n(x) \end{bmatrix} \quad \text{if} \quad g(x) = \begin{bmatrix} g_1(x) \\ g_2(x) \\ \vdots \\ g_n(x) \end{bmatrix}$$

и компоненты одного из них выражаются линейно через компоненты другого базиса для любых допустимых значений x, то соответствующие им статистические модели тождественны.

Доказательство.

Из условия теоремы вытекает существование невырожденной матрицы перехода, которую обозначим через R,

$$g(x) = Rf(x), (7)$$

$$f(x) = R^{-1}g(x). \tag{8}$$

Тогда можно построить пару статистических моделей

$$x_M = af, \ x_M = bg, \tag{9}$$

оптимальные значения критерия для которых обозначим F^* и G^* . Здесь b — вектор параметров модели в базисе g.

Подставим (7), (8) в (9), в результате чего получим новые статистические модели

$$x_M = aR^{-1}g = b'g, \quad x_M = bRf = a'f$$
 (10)

с новыми значениями параметров a' = bR и $b' = aR^{-1}$ в базисах g и f соответственно.

Покажем, что новые значения параметров совпадают с прежними значениями. Обозначим через F и G значения критерия соответствующие новым значениям параметров a' и b'. Предположим, что новым значениям параметров возможно соответствуют худшие (большие) значения критерия,

$$F \ge F$$
 ' $G \ge G$. (11)

Но из (10) следует, что

$$F = G^* \text{ in } G = F^*. \tag{12}$$

Сопоставляя (11) и (12) приходим к выводу, что $F=F^*$ и $G=G^*$, откуда следует

$$a = a', b = b'. \tag{13}$$

Поэтому, сравнивая (10) и (13), можем записать (a,f) = (b,g), что означает тождественность моделей (9).