ЭНЕРГЕТИЧЕСКАЯ БЕЗОПАСНОСТЬ

ВОЗОБНОВЛЯЕМЫЕ ИСТОЧНИКИ ЭНЕРГИИ В ЭНЕРГЕТИКЕ ЕВРОСОЮЗА

П.С. Каныгин,

кандидат экономических наук, президент корпорации «Биотехнологии» (г. Москва)

Энергетика является одной из основ и составных частей инфраструктуры человеческой цивилизации, важнейшим фактором производства и жизнеобеспечения современного общества. Именно она ресурсно обеспечивает стационарные и мобильные силовые и температурные процессы в хозяйстве, информационно-управленческую деятельность и социальную сферу, равно как и формирует значительные потоки мировой торговли и тематику международных политических отношений. И хотя в 2007-2009 гг. финансовый беспорядок как бы затенил тему мирового энергокризиса, сама по себе энергетика отнюдь не перестала существовать и постоянно напоминает о себе. В числе прочего это настоятельно требует выявления и освоения в мировой энергетике принципиально новых неуглеродных (малоуглеродных) энергоисточников как единственио возможной ее основы на будущее, причем временной границей здесь все явственнее выступает середина ХХІ в.

С особой неизбежностью эта необходимость проявляется в Евросоюзе, где развитая промышленность и плотное население соседствуют с крайне скудной собственной базой ископаемого топлива, добыча которого к тому же еще с 2004 г. начала сокращаться. К числу возобновляемых источников энергии (ВИЭ) официальный Брюссель относит энергию солнца, ветра, биомассы, океана, малых рек, водород и другие химические источники тока, а также геотермальную энергию. В остальном мире к ВИЭ причисляют и энергию атомных электростанций, однако в последние годы в их отно-

шении в Евросоюзе преобладал «остракизм» по причине боязни радиационного заражения, хотя в складывающихся условиях «ренессанс» ядерной энергии здесь представля-

ется автору безальтернативным.

Форсируя освоение ВИЭ, руководство Евросоюза преследует четыре взаимосвязанные цели, а именно по возможности закрыть дефицит энергии в регионе, мобилизовать для этого более широкий круг доступных энергоносителей, сократить свою зависимость от импорта энергии извне и, наконец, защитить экологию Европы, снизив за счет использования ВИЭ выбросы «парниковых газов» в атмосферу. Эти же планы всецело разделяет и бизнес в расчете на опережающий захват и удержание мирового рынка оборудования и технологий ВИЭ, который, по прогнозам экспертов «Бритиш Петролеум», оценивается на перспективу до 2050 г. примерно в 45 грдн долл. США.

Экономический рост на иссякающих ресурсах

В середине прошлого века академик П. Капица и известный апглийский ученый Ф. Медоуз в докладе Римского клуба «Пределы роста» отчетливо показали очевидную корреляцию между уровнем и темпом экономического развития государств и их удельной энерговооруженностью. И хотя эффективность использования энергии, особенно в ресурсосберегающей постиндустриальной экономике, постепенно нарастает, динамические ряды показателей роста и энергозатрат на него остаются в непосредственной и взаимной связи (табл. 1).

Таблица 1 Экономический рост и энергопотребление в Евросоюзе (2000 г. = 100)

Показатель	2002 г.	2005 r.	2006 r.	2007 г.
ВВП	108,4	117,8	123,6	156,5
Вацовое внутреннее				
потребление энергии	106,5	110,5	110,6	111,0

Источник. Составлено по данным Eurostat. Yearly Statistics за соответствующие годы.

Таким образом, даже при сокращении удельного потребления энергии за этот период на 1,3% в год спрос на нее в ЕС продолжает увеличиваться, а амбициозное кредо Комиссии ЕС «развитие, при котором удовлетворение нынешних нужд в энергии идет без угрозы для будущих поколений удовлетворять свои» [1], так и не оправдывается. В нелом, из всех возможных энергоисточников ЕС производит сегодня самостоятельно примерно 880 млн т у.т., покрывая этим всего 44% своих потребностей в энергии [2]. Мало надежды и на казенно-оптимистические прогнозы о том, что до 2030 г. потребление энергии здесь будет ежегодно «почти стабильным» [3], ибо сами же эксперты Комиссии ЕС ранее предрекали обратное, а именно увеличение этого потребления с 1650 млн т v.т. в 2000 г. до 1800 млн т у.т. в 2010 г. и 1900 млн т у.т. в 2030 г. [4. С. 10]. О том же свидетельствуют и их прогнозы (по базовому сценарию) по отдельным видам углеводородов, представленные ими российской стороне в ходе Энергодиалога Россия-ЕС (табл. 2).

Какие «дыры» в энергобалансе ЕС могут возникнуть при подобной ассиметрии спроса и предложения, свидетельствует прогноз по рынку природного газа, представленный стороной ЕС в ходе того же Энергодиалога (табл. 3).

Следствием такого положения является растущий импорт топлива, который в 2007 г. покрывал уже 56% потребностей ЕС при стоимости более 500 млрд евро с перспективой роста до 70% к 2030 г. [7], в чем руководство ЕС видит две главные проблемы - экономическую и политическую. Экономическая заключается в росте цен на топливо, прежде всего нефть, что закономерно в условиях структурного энергокризиса в мировой энергетике. По подсчетам Комиссии ЕС, каждый скачок вверх в амплитуде цен нефти в 20 евро за баррель добавляет к стоимости нефтяного импорта ЕС по 80 млрд евро, а с учетом того, что цены на природный газ привязаны в своей динамике к нефтяным - даже 100 млрд евро ежегодно [4. С. 2]. При этом у серьезных исследователей нет иллюзий в том, что троекратное снижение цен на нефть в 2008-2009 гг. отразило лищь изъятие из них в условиях финансового кризиса спекулятивной составляющей, тогда как экономически обоснованная, равновесная цена на нефть находится сегодня где-то на уровне 60 долл. за баррель, а в про-

Таблица 2 Прогноз роста спроса на традиционные энергоносители на рынке Евросоюза

Энергоноситель	2000 r		2010 n		2030 n		Прирост за 2000-2010 гг.	
Энергоносизель	млн т у.т.	%	млн т ул	%	млн т у.т.	%	млн т у.т.	%
Твердое топливо	307	19	287	16	293	15	-13	- 4
Нефть	635	38	669	37	640	34	6	1
l'as	376	23	462	26	518	27	142	38
Ядерная энергия	238	14	249	14	211	-11	-27	- 11
Общий спрос на энергию	1654	100	1813	100	1895	100	241	15

Примечание. В общий спрос включены также другие виды энергии, в т.ч. с ГЭС и ВЭИ. Источник. [5, С. 11].

Таблица 3 Соотношение спроса и предложения на природный газ на рынке Евросоюза, млрд м³

Показатель	2010 n	2015 n	2020 г.	2025 г.	2030 r.
Ожидаемый спрос	513	566	588	580	575
Ожидаемое покрытие	256	251	233	223	217
В том числе:					
собственная добыча	161	138	108	100	95
поставки из Норвегии	95	113	125	123	122
Дефицит	257	315	355	357	358

Источник. [6].

гнозах Комиссии ЕС и Международного энергетического агентства (МЭА) на перспективу фигурируют цены в 120-200 долл./ барр. [8. С. 19].

«Таким образом, - комментируют складывающуюся ситуацию эксперты Евросоюза, - за последние десять лет общая энергозависимость ЕС-27 возросла на 9 п. п. В 2005 г. одиннадцать государств Евросоюза стали менее зависимы от энергоимпорта, чем в 1995 г., но другие одинналнать, наоборот, попали в еще большую зависимость < > причем максимальным это увеличение - от 14 до 20 п. п. - было в Венгрии, Польше и Нидерландах, а в Великобритании, которая в 1995 г. выступала чистым экспортером энергии, ситуация за это время изменилась на прямо противоположную» [9]. При этом по газу Болгария, Латвия, Литва, Словакия, Швеция, Финляндия, по нефти - Венгрия, Литва, Словакия, Польша и по углю - Кипр, Литва, Латвия и Эстония зависят всего от одного внешнего поставщика, а это, по мнению Брюсселя, уже политика.

Наконец, самостоятельной проблемой европейской энергетики является то, что именно она выбрасывает в атмосферу, при нынешней структуре энергобаланса, до 80% парниковых газов, нарущающих экологию континента вплоть до необратимых изменений его погоды и климата, что означает поиск, в дополнение к ее прочим качествам, еще и экологически чистой энергии.

В качестве ответа на подобные обостряющиеся проблемы руководство ЕС в 2007-2008 гг. сформулировало и одобрило свою «Новую энергетическую политику», конкретизированную в плане действий по обеспечению безопасности и солидарности стран ЕС в сфере энергетики. Среди намеченных тематических направлений - диверсификация и обеспечение инфраструктуры внешнего энергосбережения Евросоюза, маневр запасами нефти и газа в кризисных ситуациях, повышение энергоэффективности хозяйства, но главное - «наилучшее использование собственных энергетических ресурсов ЕС», в контексте чего в этих политике и Плане ставится задача форсированного освоения и внедрения в хозяйственный оборот, в отличие от традиционных невозобновляемых и истощающихся, альтернативных возобновляемых источников энергии с доведением их доли в энергобалансе к 2020 г. в качестве нормативного задания до 20% вместо прежних прогнозных 12% [10]. Действительно, ВИЭ — единственные, по которым энергозависимость ЕС не растет, тогда как по нефти и газу она увеличивается.

«Именно с их помощью, - отмечала Комиссия ЕС, - Евросоюз должен сделать первый шаг, с тем чтобы разорвать порочный круг возрастающего энергопотребления, разбухающего энергоимпорта и увеличивающегося оттока богатства, созданного нами. в карманы продуцентов энергии [8, С. 2]. Еще больший восторг по поводу поворота ЕС лицом к ВЭИ испытывают «зеленые» и антиглобалисты, для которых их освоение это своего рода идефикс [11; 12]. «ВИЭ, также как сила ветра, энергия солнца, гидроэнергия и биомасса, + ликовало агентство «Юрактив», - могут сыграть роль в решении двойной задачи: обеспечение нашей энергобезопасности и предотвращение глобального потепления, ибо они неисчерпаемы и выделяют меньше «парниковых газов», чем ископаемые углеводороды [13].

Соответственно, возникает необходимость всесторонней оценки ВИЭ как нового направления в энергетике, включая их физическую природу, технологии использования, энергохарактеристики, а главное, экономику этого феномена, от которой будет прямо зависеть хозяйственное использование ВИЭ на перспективу.

Подспорье из прошлого и будущего

Универсального определения ВЭИ пока не выработано и в отдельных публикациях, в том числе официальных. Речь идет, скорее, о наборе сил и продуктов природы и общества, способных производить энергию в коммерческих или бытовых масштабах. Это и понятно, ибо, по методологии Комиссии ЕС, в число ВИЭ может быть включена любая «экзотика», если она «может сыграть свою роль в достижении безопасности нашего энергоснабжения с учетом не только экономических факторов, но и соображений экологического и геополитического порядка» [14].

Пока же в тематическом справочнике МЭА (методологии которого в целом следует и Евростат) [15] в перечень этих источников входят:

- *гидроэнергетические* (кроме крупных ГЭС), преобразующие кинетическую энергию воды в электроэнергию;
- геотермальная энергия, которая поступает из земной коры в виде горячей воды, тепла или пара;
- энергия солнца, улавливаемая через гелиоприемники для производства тепла и электроэнергии;
- энергия океана (приливная, волновая, течений и пр.), преобразуемая из кинетической в электрическую;
- энергия ветра, т. е. кинетическая энергия воздушных потоков, преобразуемая в электроэнергию;
- промышленные и коммунальные отходы (твердые, жидкие и газообразные), способные давать тепловую и электрическую энергию при своем сжигании, биологическом разложении или иных способах переработки;
- биомасса различного происхождения из отходов сельского и лесного хозяйства, быта, а также специально культивируемых растений, перерабатываемая в тепло, электроэнергию или в биотопливо.

Для целей настоящего исследования в этот перечень автором включены как перспективные и высокотехнологические ВИЭ также атомная энергия и водород.

Таким образом, в ВЭИ просматриваются как бы три поколения продуктов (процессов) по степени их известности (освоенности) и применимости: а) исторически давно известные (энергия биомассы, ветра, гидро- и геотермальная энергия), хотя и воспроизводимые сегодня на новой технической базе; б) относительно новые (гелиоэнергетика, промышленные и бытовые отходы) и в) принципиально новые (атомная энергия, водород, энергия океана). И если первые две группы являются смесью углеводородных и неуглеводородных ВЭИ, то третья — уже целиком «декарбонизированная».

Естественно, что при таком многообразии статистика ВЭИ остается малонадежной и противоречивой. В частности, в нее, как правило, не попадает часть биомассы, используемой в домашних хозяйствах. Промышленные и бытовые отходы учитываются в одних странах целиком, в других — только в своей биоразлагаемой части. Крайне трудно бывает учесть использование энергии солнца, многие страны не включают в число возобновляемых атомную энергию, равно как включают или не включают водород. Другими словами, само понятие ВИЭ является пока собирательным и подвижным, а имеющаяся статистика, как правило, занижает реальные объемы их использования.

Крайне осторожно следует подходить и к показателям использования отдельных ВИЭ в современной энергетике, не фетишизируя огульно их абсолютные и относительные значения. Например, развивающиеся страны вполне естественно превосходят развитые по использованию в хозяйстве биомассы (в Африке биомасса дает до половины энергии, в странах ОЭСР – в десять разменьшую долю), что вовсе не означает их прогресса в энергетике.

Северные государства располагают меньшим потенциалом гелиоэнергетики, чем южные и экваториальные (в рамках ЕС этот разрыв между Скандинавией и Средиземноморьем составляют до 20%), горные и прибрежные – большим потенциалом ветровой энергии, чем равнинные и внутриконтинентальные, и т. д. Строго локализированными остаются и геотермальные источники. Поэтому и оценка «продвинутости» отдельных стран по пути освоения ВИЭ неизбежно должна быть исторически конкретной и базирующейся на всем их наборе или на его преобладающей части.

Весьма своеобразны ВИЭ и как товары. Разумеется, каждый из них имеет свою потребительную стоимость, но сложнее обстоит дело с образованием меновой. Многие ВИЭ как таковые представляют собой различные физические субстанции, в том числе не имеющие (ветер, солнечный свет, вода рек и океана) ценовой оценки или рыночных условий производства (отходы) и использования (быт). В процессе обмена поступают, как правило, не они сами, а извлекаемая из них энергия. В то же время при различиях в условиях их мобилизации и эксплуатации в цену ВИЭ вполне может входить дифференциальная рента, а в случае привязки такой альтернативной энергетики к земле (ветропарки, термопарки, площадки гелиоприемников, леса,

сельхозугодия для производства сырья для биотоплива и т. д.) - абсолютная, при использовании же нередовых технических присмов - еще и технологическая. Особо пужно отметить и то, что процессы ценообразования в применении к ВИЭ, как правило, не реализуются в своем классическом, рыночном виде, ибо за освоением этих источников в Евросоюзе стоит государство, искажающее их рыночную стоимость своим финансовым и административным вмешательством. Например, «судьба биотоплива, - признавалось в одной из брощюр Комиссии ЕС, - целиком зависит от надоговых льгот», а в более общем плане прямо признавалось, что «вклад ВИЭ в энергетику будет определяться нашей политической волей стимулировать их использование и тем самым сделать их экономически привлекательными» [15].

Действительно, об этом уже говорит сам факт установления 20%-й доли ВИЭ в потреблении энергии в ЕС в качестве директивного задания с конкретной разбивкой по отдельным странам и периодам времени. Это задание в целом по ЕС должно быть выполнено, под жестким мониторингом Комиссии ЕС и Европарламента, на 25% в течение 2010–2012 гг., 45% – в 2015–2016 гг. и 65% – в 2017–2018 гг. Задания же по ВИЭ по отдельным странам выглядят следующим образом (табл. 4).

Эти задания, принятые, в основном, под давлением общественности и «зеленых», отдают своей крайней политической амбициозностью, ибо пока доля ВИЭ в валовом конечном потреблении энергии в ЕС равна около 8%, а на 2020 г. той же Комиссией ЕС первоначально планировались более реалистичные 12%. Государства начинают их выполнять с различных стартовых позиций, так что даже в 2020 г. у 15 из них доля ВИЭ запланирована ниже средней, а сам диапазон разлета ноказателей равен 10-49%.

Одпако факт и то, что в последние годы роль ВИЭ в энергобалансе росла почти у всех стран ЕС, хотя и неравномерно (табл. 5).

По структурной разбивке в ЕС-27 в настоящее время 59,6% первичной энергии из ВИЭ производится из биомассы (в том числе 52,2% из древесной клегчатки и 7,4% из иной органики, включая специальные сельхозкультуры и отходы агробизнеса и быта), 22% — на малых ТЭС, 5,1% — силой ветра, 4,5% — из геотермальных источников и 0,7% — солнца.

По конечному назначению ВИЭ вносят 14% в производство ЕС-27 электроэнергии (464,3 КВт-ч, в том числе малые ГЭС – 306,9, биомасса – 80,0, ветер — 70,5, геотермика – 5,4 и солнце – 1,5) и 10% тепла (57,6 млн т у.т., в том числе биомасса 56,2 и солнце и гиотермика – по 0,7) [15. С. 5, 6, 9].

Таблица 4 Директивные нормы* доли ВИЭ в валовом конечном потреблении энергии в странах Евросоюза на 2020 г., %

Страна	2005 г., факт	2020 r	Страна	2005 г., факт	2020 г.
Австрия	23,3	34	Люксембург	0,9	11
Бельгия	2,2	13	Мальта	0,0	10
Болгария	9,4	16	Нидерланды	2,4	14
Великобритания	1,3	15	Полыпа	7,2	15
Венгрия	4,3	13	Португалия	20,5	31
Германия	5,8	18	Румыния	17,8	24
Греция	6,9	18	Словения	6,7	14
Дания	17,0	30	Словакия	16,0	25
Ирдандия	3,1	16	Финляндия	28,5	38
Испания	8,7	20	Франция	10,3	23
Италия	5,2	17	Чехия	6,1	13
Кипр	2,9	13	Швеция	39,8	49
Латвия	32,6	40	Эстония	-18 :0 * =	- 25
Литва	15,0	23	1	and section 1	

^{*} Норма как часть 20%-й доли.

Источник. [13. С. 2, 3].

 $^{{\}it Примечание}.$ Без энергии АЭС и крупных ГЭС.

Таблина 5

Динамика потребления энергии из ВИЭ в ЕС-27, т у.т.

			Источники	2]	% к валовому	
Год	1	II	п		v	Всего	внутреннему потреблению	
1995	28		4,0	_	52	84	5,1	
1996	85	_	4,0	-	55	87	5,1	
1997	29	_	5,0	_	58	91	5,4	
1998	30	_	5,0	-	59	94	5,5	
1999	29	-	6,0	_	59	95	5,6	
2000	30	_	6,0	_	63	99	5,8	
2001	32	2,3	0,4	3,6	64	101	5,9	
2002	27	3,1	0,5	3,9	66	100	5,8	
2003	26	3,8	0,6	5,3	71	108	6,0	
2004	28	5,1	0,7	5,4	76	115	6,4	
2005	28	6,0	0,8	5,3	82	119	6,7	
2006	27	7,0	1,0	5,6	87	127	7,0	

Примечание. І – малые ТЭС; П – ветер; III – солнце; IV – геотермальная энергия; V – биомасса (клетчатка, сельскохозяйственные и коммунальные отходы). Отдельные итоги не сходятся из-за округлений. Источник. Составлено по данным [17; 18].

В наименьшей степени ВИЭ проникли пока в моторное топливо (около 2%) в виде биодизеля, биоэтанола и биогаза, производимых только из биомассы, однако первоначальные наметки довести этот показатель до 5,75% к 2010 г. затем волевым порядком были увеличены до 10% к 2020 г.

Много более впечатляющие результаты получаются при учете среди ВИЭ продукции ядерных электростанций, даже если прогнозы Евростата и МЭА искусственно занижают ее вклад на перспективу (табл. 6).

Таким образом, в ЕС за пределами традиционной углеводородной энергетики уже сформировалась иная, которая сегодня удовлетворяет 1/5 потребностей Евросо-103а в энергии, а к 2030 г. эта доля возрастем до 1/4 (или больше в случае «ренессанса» ядерной энергетики). Но даже если этого и не произойдет, то прогноз МЭА по АЭС все равно выглядит намеренно заниженным, т. е. демонтаж АЭС здесь уже прекращен, сооружается еще 4 энергоблока (Болгария – 2, Финляндия – 1, Франция – 1) совокупной установленной мощностью 5106 МВт. Потому снижение отпуска электроэнергии (и тепла) с АЭС, прогнозируемое экспертами МЭА на весь период до 2030 г., просто не сможет иметь места.

Заменить выпадающую из-за энергокризиса часть углеводородной базы энергетики целиком все равно нечем, и, в частности для мира в целом, то же МЭА прогнозирует рост доли АЭС в энергобалансе к 2030 г. на 0,7-

Совокупная доля ВИЭ и АЭС в энергетике ЕС-27, млн т у.т.

Таблица 6

Ноказатель	1990 r	2006 r.	2015 r.	2020 г.	2030 г	Темп роста, % в год
Общий спрос						
на первичную энергию	1652	1821	1897	1903	1903	0,2
Из них: биомасса и отходы	46	93	131	153	188	3,0
малые ГЭС	25	26	33	35	38	1,5
прочие ВИЭ	3	14	40	53	82	7,7
АЭС	207	258	230	206	174	-1,6
Доля в общем спросе ВИЭ	0,4	7,0	10,7	12,7	16,0	-
ВИЭ+АЭС	1,7	21.0	22,8	23,5	25,0	-

Источник. [19. C. 520].

1,7 п. п. при сокращении доли нефти на 3,94—4,95 п. п. [19. С. 148; 20]. Точно также отказ от производства биотоплива, по расчетам аналитиков «Мэрилл Линч», привел бы к немедленному росту цен на нефть и бензин на 15% [21].

Другое дело, что процесс внедрения ВИЭ в энергетику и экономику идет неравномерно по отдельным странам и сферам хозяйства, и так, скорее всего, будет и впредь. В частности, в Австрии, Франции, Греции и на Кипре доля ВИЭ в валовом внутреннем потреблении энергии за 1995 - 2005 гг. не возросла, а сократилась, в Бельгии, Греции, Германии, Ирландии, Испании, Франции, Италии, Австрии, Португалии и Словакии сократилось генерирование электроэнергии на малых ГЭС, на Кипре - использование биомассы, и там же не было малых ГЭС и т. д. [22]. Однако, в целом, ВИЭ (и атомная энергетика) довольно успешно пробивают себе дорогу в основные секторы хозяйства.

Особенно далеко этот процесс зашел в электроэнергетике ЕС, где доля ВИЭ в установленной мощности электростанций в 2006 г. составила уже 38% (с АЭС - 44%) при прогнозе на 2030 г. 51% (с АЭС - 60%) и темпах роста электрогенерации в 2006-2030 гг. на базе малых ИЭС в 1,5%, биомассы -3,6%, геотермики -3,8%, ветра -8,6%, энергии океана - 13,4% и солнца - даже 16,9%. О том, что такой прогноз правдолодобен, говорят и фактические данные за 2001-2006 гг., когда съем электроэнергии с фотоэлектрических преобразователей вырос со 193 ГВт ч до 2495, с генераторов на биогазе - c 7367 до 15 380, на биомассе - c 14 803 до 24 710, с турбин мини-ГЭС с установленной мощностью менее 1 МВт - с 9056 до 9253, с генераторов на базе муниципальных отходов - с 14 803 до 24 710 ГВт-ч и т. д. При этом характерно, что производство электроэнергии на ГЭС мощностью 10 МВт и более за этот период даже унало.

Заметно медленнее ВИЭ проникают в сферу теплоснабжения и в сферу транспорта, где производство биотоплива хотя и выросло за тот же период с 961 до 7370 тыс. т, но пока остается лишь административно внедряемой присадкой [18. С. 20–21; 19. С. 521].

Показательно, что производителями энергии из ВЭИ, оборудования и техноло-

гий их освоения все чаще выступают те же энергетические корпорации, которые контролируют традиционную энергетику. В частности, «Бритиш Петролеум» выделила в своей структуре подразделение «БП Альтернейтив энерджи», которое уже выпустило ветротурбин на 346 МВг, освоило производство различных гелиоприемников, создало совместное предприятие по водородной энергетике и направило часть инвестиций в производство биотоплива.

В публикациях органов ЕС все чаще появляются прогнозы по ВИЭ уже и до 2050 г. В частности, прогнозируется, что на эту дату доля традиционного топлива в потреблении энергии ЕС упадет до менее, чем половины, ВИЭ и АЭС будут давать ³/₄ объема электрогенерации и половину тепла, а на коммерческий рынок выйдет водород в размере эквивалента 15% производимой электроэнергии [3. С. 3].

Свет и тени альтернативной энергетики

Конечно же, освоение ВИЭ имеет ряд преимуществ, в том числе применительно к ситуации в ЕС. Как указывалось в «Зеленой книге» Комиссии ЕС по этой теме, ВИЭ вполне укладываются в избранную Евросоюзом стратегию устойчивого развития экономики, помогают снизить зависимость от энергоимпорта, повышают степень территориальной привязки экономики ЕС к ресурсной базе. Их местное производство остается под контролем ЕС и его стран-членов, что рассматривается ими как одна из гарантий энергетической безопасности, стимулирует региональное развитие, снижает экологические риски, дает стимул для роста занятости, технического прогресса и позитивно воспринимается общественностью. Например, только гелиоэнергетика создает в ЕС 32 тыс. рабочих мест с перспективой в 150 тыс. к 2020 г., освоение всех ВИЭ - до полумиллиона. Причем, если обычно число занятых сокращается по мере технического прогресса в данной сфере, на сроке ее бурного роста все происходит наоборот [23].

По своему собирательному потенциалу ВИЭ действительно могут претендовать к 2030 г. на роль третьего по значимости источника первичной энергии в ЕС, а в перс-

пективе до 2050 г. – уже и второго. «Потому Евросоюз, – констатировала Комиссия ЕС, – не может себе позволить игнорировать дополнительные источники энергии, которые могут быть мобилизованы на его собственной территории». Но в той же публикации откровенно признается, что «если говорится о препятствиях к их освоению, то имя им – легион» [16. С. 22].

В систематизированном виде эти препятствия могут быть сгруппированы следующим образом.

Во-первых, ввиду различий места и способа их освоения даже одни и те же ВИЭ различны и негомогенны по своим техническим характеристикам. Разнятся и стандарты по ним в разных странах ЕС, что существенно ограничивает их производственную приемлемость, конкурентоспособность и участие в международной торговле. Это, в частности, относится к биотопливу.

Во-вторых, отнюдь не универсальной является и их доступность, не говоря уже о «неисчерпаемости». Лишь несколько стран ЕС имеет на своей территории возможность осваивать весь приведенный выше набор ВИЭ, а гораздо чаще речь идет, особенно в коммерческих масштабах, лишь о доле такого набора. В частности, это относится к геотермальной энергии и энергии океана.

В-третьих, природные процессы, лежащие в основе ВИЭ, отличаются в разных странах по своей интенсивности, что корректирует все ту же доступность. Иллюстрациями к этому могут служить количество солнечных дней в году и относительная сила светового потока для гелиоэнергетики, скорость, плотность и постоянство ветров и высота приливов. Во всех этих случаях отбор энергии оказывается прерывным или неравномерным, что требует сочетания генерирующих установок с дорогостоящими аккумулирующими устройствами или же подключения потребителей к резервным (традиционным) сетям электротеплоснабжения. На это, в частности, обращало внимание уже самое первое исследование по ВИЭ, подготовленное в ЕС еще в 1994 г. [24].

Еще и поэтому, в-четвертых, практически все ВИЭ выступают как местные, привязанные к изолированным потребителям и редко подключаемые к сетям энергоснабжения. Это особенно характерно для геотермики, а такой лидер среди ВИЭ, как биомасса, практически (кроме переработки коммунальных отходов) отсутствует в городах, хотя именно в перспективе, до 2030 г., будет корректироваться основной прирост спроса на энергию.

Сходным ограничителем, в-пятых, служит неуниверсальность ВИЭ как энергоносителей в отношении возможных сфер применения. Лишь биотопливо может применяться во всех секторах спроса триады «электроэнергия—тепло—моторное топливо», геотермальная, атомная и солнечная энергии— в первых двух, тогда как остальные ВИЭ—только в одной определенной сфере применения.

В-шестых, многие виды ВИЭ, хотя они и претендуют на замену традиционных, как правило, уступают им в энергоэффективности. Например, к.п.д. гелиоэлектроустановок нока равен всего 26-28%, тепловых гелиоприемников - 10-45, ветротурбин - 40, геотермики - 5-24, волновых электрогенераторов (теоретически) - 50, приливных (теоретически) - 40, биомассы - 8-40% и т. д. в зависимости от способа и технологии использования, а также единичной мощности установок. Она же составляет сегодня у гелиоустановок 0.05-30 MBT, ветровых -0.1-5, малых ГЭС - 1-10, геотермики - 5-50, биоконверторов - 0,01-50 МВт, т. е. это пока, в основном, не большая, а малая, «карманная» энергетика.

Ее слабой стороной остаются издержки производства при использовании ВИЭ в силу их все еще несовершенных технологий, отличий по теплотворной способности и малых единичных мощностей установок. Конечно, эти издержки постепенно снижаются, и, по агрегированным подсчетам и прогнозам Комиссии ЕС, оправдавшимся на практике, за последние 15 лет они сократились в целом примерно на 1/3 (табл. 7).

По другим, уже опережающим оценкам, с 2005 по 2010 г. издержки генерирования одного киловатт-часа должны снизиться по тепловой гелиоэнергии с 10 до 7 ц, энергии из биомассы — с 12 до 9 ц, гелиоэнергии фотоэлектрических конверторов — с 38 до 30 ц с перспективой их дальнейшего снижения к 2020 г. до 4, 7 и 12 ц соответственно. Однако все эти

Таблица 7

Примерная динамика сцижения издержек производства ВИЭ в странах Евросоюза (1992 к=100)

Вид энергии	2000 г.	2010 г.
Ветровая	75	65
Биомасса	75–90	60-80
Гидроэнергия	9598	90-95
Эпергия волн	90-100	6590
Геотермальная	95	90
Приливная	95	

Источник. Составлено по материалам Комиссии ЕС.

усреднения остаются весьма условными, ибо в сфере ВИЭ преобладает пока широкий разброс индивидуальных, местных издержек энергоустановок, что, в свою очередь, не позволяет скалькулировать и какие-то их информативные, и достоверные справочные цены. По подсчетам экспертов ЕС, индивидуальные издержки производства киловатт-часа электроэнергии из ВИЭ даже при централизованном электроснабжении колебались в первые годы нашего века по ветровой энергии в диапазоне 25 ц. гелиоэлектрической - 15, энергии мини-ГЭС - 20, геотермальной - 10 и биоэлектроэнергетики - 7-8 ц, причем в сферс нецентрализованного снабжения эти диапазоны были еще более широкими. При теплоснабжении тот же киловатт-час предлагался при централизованном снабжении с отклонениями в 5-7 ц (для гелиотермальных установок – 12–15 ц) с той же наценкой при децентрализованном.

Естественно, это крайне затрудняет конкурентные сравнения цен возобновляемой энергии и традиционной невозобновляемой, причем на уровне потребительских

цен возможность таких сравнений лишает показательности еще и хозяйственная политика отдельных стран ЕС, либо субсидирующих такие цены, либо отягошающих их налогами и акцизами. «Текущие цены на энергию в различных странах Евросоюза. отмечают эксперты Комиссии ЕС, - варьируются в весьма широких пределах ввиду различий в уровнях их налоговой составляющей, структуры цены, различных субсидий на энергоснабжение и различий в функционировании энергорынков» [25]. И действительно, если в сфере моторного топлива местные ценовые различия на биоэтанол и биодизель не превышают до налогообложения (там. где оно есть) 40 ц за литр, то после налогов у биоэтанола это различие возрастает втрое.

Поэтому пока можно констатировать, что ВИЭ даже в своей нижней кромке цен оказываются все еще существенно дороже своих традиционных углеводородных конкурентов и только в отдельных случаях приближаются к несубсидируемым ценам на энергию АЭС.

На перспективу – до 2030 г. – экспертами МЭА подготовлены лишь примерные оценки динамики издержек генерирования электроэнергии из ВИЭ в среднем по миру, применимые и для ЕС. По усредненной оценке специалистов, равновесная цена нефти, при которой (с учетом ее относительной стабильности или дальнейшего роста) станет рентабельным коммерческое освоение отдельных, наиболее продвинутых ВИЭ (ветер, биотопливо, мини-ГЭС), видится в диапазоне 60-80 долл./барр (табл. 8).

Таблица 8 Прогнозная динамика минимальных издержек электрогенерации на базе ВИЭ (в ценах 2007 г.)

виэ	тыс. долл.	за 1 КВт уста мощности	новленной	долл. за 1 МВт∙ч			
	2006 г.	2015 n	2030 E	2006 г	2015 E	2030 г	
Малые ГЭС	7	2,2	2,3	50	50	50	
Геотермальные	3,6	3,4	3,2	90	80	70	
Ветровая на суше	1,8	1,7	1,6	100	90	85	
Ветровая оффшорная	3,0	2,5	2,5		[
Биомасса	3,2	3,0	2,8	40	40	40	
Солнечные коллекторы	3,8	2,8	2,1	150	110	80	
Фотоэлектрические		·			1		
преобразователи	6,4	3,5	2,4	310	160	115	

Источник. [19. С. 164-165].

Таким образом, резервы снижения себестоимости и цен ВИЭ оказываются на перспективу не столь уж значительными, кроме гелиоэнергетики. Свои коррективы (до двух дополнительных процентных пунктов в энергобалансе) могут, конечно же, внести будущие равновесные цены на нефть и газ, которым большинство экспертов прочит, как это уже отмечалось выше, повышательную динамику. Но здесь будет действовать и очевидный сдерживающий фактор, а именно то, что выполнение в полном объеме всех планов и наметок ЕС по освоению ВИЭ на перспективу до 2020 г., потребовало бы неподъемных капиталовложений, а именно порядка 3 трлн долл. США в период до 2030 г. в одну только электрогенерацию на базе ВИЭ, не говоря о других сферах их освоения [26].

В этих условиях ряд аналитиков (В. Шива, К. Мандель, Н. Штайнер и др.) предлагают, рассматривая освоение ВИЭ по максимуму как самоцель, изменить всю систему ценообразования на конкурирующие традиционные энергоносители, включив в их цену также и «внешние издержки», прежде всего за экологический и иной ущерб от их использования с выходом, соответственно, на «полную социальную цену» углеводородов, искусственно превышающую нынешнюю равновесную (см., напр., [27]). Однако такая инициатива расширительного толкования принципа «загрязнитель платит» отвергается большинством специалистов и политиков, ибо это увеличило бы расходы на энергию и ее импорт, заставило бы перестроить налоговую систему, не говоря уже о том, что усложнило бы переговоры по продлению Протокода Киото на срок далее 2012 г., породило бы неопределенность в том, что конкретно считать «вне-Шними издержками» (оцениваемыми, кстати, в 10-18 млрд евро в год). Дополнительным контраргументом здесь выступает и то, что и сами ВИЭ, вопреки заверениям «зеленых», отнюдь не нейтральны к окружающей среде и генерируют свои загрязнения.

Суммируя сказанное, достаточно трудно согласиться с надеждами Комиссии ЕС на то, что «развитие источников энергии, альтернативных исконаемому топливу, поможет гарантировать безопасность энергообеспечения ЕС и сократит наши расходы по импорту, возросшие из-за увеличения его цен [28].

Конечно, 20% ВИЭ в балансе потребления энергии вкупе с другой директивой о повышении энергоэффективности хозяйства ЕС на те же 20% к 2020 г. могут, согласно общим расчетам, дать общую экономию традиционной энергии к 2020 г. примерно в 250 млн т у.т. в год, из которых около 200 млн т у.т. иначе пришлось бы импортировать [29].

Однако, во-первых, нет гарантий, что все эти новые и амбициозные директивные задания будут выполнены, ибо они примерно вдвое превышают предыдущие аналогичные рекомендации ЕС. По крайней мере, даже среди развитого ядра ЕС-15 лишь Дания, Германия, Испания и Финляндия, по оценке Комиссии ЕС, смогут относительно успешно справиться со своими заданиями по ВИЭ. Австрии, Бельгии, Великобритании, Ирландии, Нидерландам, Франции и Швеции это будет весьма нелегко, а от Португалии и Греции этого вряд ли можно ожидать.

Во-вторых, с учетом отмеченных выше «узких мест» большинства ВИЭ, это, конечно же, не «большая энергетика будущего».

В-третьих, технологии освоения различных ВИЭ достаточно широко расходятся по времени своей фактической и возможной коммерческой реализации, о чем свидетельствует табл. 9. К тому же, прогнозные сроки освоения тех или иных технологий являются обычно примерными и не всегда выдерживаются.

В более же обобщающем виде о том, что ЕС даже после внедрения в свою энергетику ВИЭ, по самым оптимистическим сценариям, останется энергодефицитной и зависимой от импорта территорией, говорит сама же статистика Евросоюза (табл. 10).

Данный факт, впрочем, признает и руководство Евросоюза: «Наша схема 20:20:20 сама по себе никак не удовлетворит нужд энергобезопасности Евросоюза» [8. С. 17], тем более, если трактовать такую безопасность как «устойчивое физическое наличие энергопродуктов на рынке по приемлемым ценам для всех потребителей при должном внимании к экологическим озабоченностям и при переходе на модель устойчивого развития» [30]. «Даже если цели политики в отношении освоения ВИЭ и будут достиг-

Таблица 9

Стадии коммерческого освоения основных ВИЭ по способам их использования на 2008 г.

. Коммерчески освоенные технологии, вышедшие на рынок

Утилизация исходной биомассы

Утилизация муниципальных отходов

Пассивное использование энергии солнца

Ветровые турбины

Гидрогермальные источники

Атомные эпергетические реакторы

Мипи-ГЭС

2. Технологии, впервые предлагаемые рынку

Производство древесных пеллет

Биогаз, биодизель, биоэтанол

Управляемая анаэробная переработка биомассы

Гелиоприемники

3. Технологин, остающиеся в стадии разработки

Установки для использования энергии океана

Водород, тондивные элементы

Термоядерные реакторы

Аккумулирование и хранение энергии

Источник, Составлено по [15, С. 16] и пр. литературе по проблеме.

нуты, – констатировал Председатель Комиссии ЕС Х.М. Баррозу на презентации Программы действий ЕС по обеспечению эпергетической безопасности и солидарности в ноябре 2008 г., – Европа скорее всего станет даже более зависимой от энергоимпорта, чем сегодня» [31].

Поэтому можно лишь частично согласиться с российским аналитиком А. Поба-

дом в том, что традиционная энергетика, базирующаяся на ископаемых энергоресурсах, оказывается технологически, экономически и экологически несостоятельной. По крайней мере, в ЕС (как в мире, и в России) пока просто нет лоугой и замешающей энергетики и ВИЭ, по большоми счету, являются сегодня не более, чем паллиативным подспорьем, берущим свои начала во многом из прошлого и лишь ограниченно вписывающимся в ТЭК будишего.

«Как таковые, ВИЭ – это только часть решения вопроса, – суммировал ситуацию бывший Президент Франции

Ж. Ширак, – и их недостаточно для того, чтобы достичь наших целей», потому рано или поздно «они должны быть, в свою очередь, замещены в более широких масштабах неуглеродной энергетикой» [32].

Вместе с тем даже и в такой, пусть ограниченной и промежуточной своей роли, ВИЭ, конечно же, нужно внимательно изучать и знать в лицо.

Таблица 10 Остаточная энергозависимость Евросоюза после выполнения мероприятий, предусмотренных для освоения ВИЭ и экономии энергии к 2020 г., млн т ут. (в ценах 2007 г.)

Показатель	2005 г., факт	ΙA	IБ	II A	ИБ
Спрос на первичную энергию	1811	1968	1903	1 712	1672
Собственное производство энергии	896	725	724	733	763
В том числе:					i
из ВИЭ	122	193	213	247	250
с АЭС	257	221	249	218	233
ВИЭ и АЭС, %		_			
к производству	42,3	57,1	59,7	63,4	63,3
к спросу	20,9	20,8	24,3	27,2	28,9
Необходимый чистый импорт	975	1301	1184	1033	962
% к спросу	53,8	66,1	62,2	60,3	57,5

Примечание.

Источник. [8. С. 19].

I A – по базовому (пассивному) сценарию действий при цене нефти 61 долд./барр.

I Б – то же, при 100 долл./барр.

II Λ – по сценарию активных действий («Новая энергетическая политика») при условной цене нефти в 61 долл./бар.

ИБ – то же, при 100 долл./барр.

ЛИТЕРАТУРА

- 1. EU. A Sustainable Future is in Our Hands. Luxemburg, OOP, 2008.
 - 2. EU. Doc.COM (2008) 744. P. 10.
 - 3, EU, MEMO/07/02, 08.01,2007, P. 3.
 - 4. EU. Doc.COM (2006) 105.
- 5. EU. Energy Scenarios up to 2030. Paris, Kantor, 2006.
- 6. EU. Gas Supply-Demand Scenarios. Paris, Kantor, 2006. P. 3.
 - 7. EU. Education in Energy. P. 3.
 - 8. EU. Doc.SEC (2008) 2794.
- 9. Eurostat. Energy, Transport and Environmental Indicators, 2008. Luxemburg, OOP, 2008. P. 21.
 - 10. EU. MEMO/08/7003,13.11.2008. P. 1, 2.
- 11. Greenpeace. Energy (R)evolution. Brussels, EREC, 2008.
- 12. Scheer H. Energy Autonomy. London, Earthscan, 2006.
 - 13. Euractive. 7.11.2008.
 - 14. EU. Report on the Green Paper, 2008. P. 1.
- 15. IEA. Renewables Information, 2008. Paris, OECD, 2008. P. XI-XIII.

- EU. Energy. Luxembourg, 2006, OOP.
 P. 17, 22.
- 17. Eurostat. Energy, Transport and Environment Indicators. Luxembourg, OOP, 2007. P. 59 (до 2000 г.).
- 18. EU. Yearly Statistics, 2006. Luxembourg, OOP, 2007. P. 20.
 - 19. IEA.Outlook. 2008.
- 20. Revue generale nucleaire. 2007. № 1. P. 10-11.
 - 21. Профиль. 08.09.2008. С. 41.
 - 22. Eurostat. Indicators. 2006. P. 38.
 - 23. Sonnenenergie. 2007. № 1-2. P. 84-86.
- The European Renewable Energy Study.
 Main Report and Annexes. Luxembourg, OOP, 1994.
- 25. EU. Energy and Environment Report. 2008. Luxembourg, OOP, 2008. P. 6.
- 26. EU. Strategic Report on the Renewed Lisbon Strategy for Growth and Jobs. Luxembourg, OOP, 2008. P. 33.
 - 27. Research EU. April 2008. P. 5-8.
 - 28. EU. Doc. COM (2004) 366. P. 2.
 - 29. EU. Doc. COM (2006) 848. P. 3.
 - 30. EU. Doc. COM (2000) 769. P. 2.
 - 31. EU. Doc. IP/108/1696, 13.11.2008. P. 2.
 - 32. Europe. 10.03.2007.

Материал поступил 22.04 2009 г.