МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ КОНТРОЛЯ ЗНАНИЙ СТУДЕНТОВ

1. Перечень экзаменационных вопросов по курсу «Основы высшей математики»

(для специальностей 1-23 01 04 психология, 1-23 01 05 социология)

- 1. Основные понятия логики высказываний.
- 2. Логические операции и их свойства.
- 3. Таблицы истинности логических высказываний.
- 4. Общезначимость и выполнимость логических формул.
- 5. Множества и способы их заданий, мощность множеств.
- 6. Операции над множествами и их свойства.
- 7. Характеристические вектора конечных множеств и действия над ними.
- 8. Графическая интерпретация операций над множествами, диаграммы Эйлера— Венна.
- 9. Нечеткие подмножества множеств, мультимножества и операции над ними.
- 10. Отображения множеств, их виды, операция умножения (композиция) отображений.
- 11. Бинарные отношения, их виды и свойства.
- 12. Операции, выполняемые над бинарными отношениями.
- 13. Примеры бинарных отношений и их применение в теории графов.
- 14. Определение матриц и их основные типы (матрицы-вектора и матрицы-столбцы).
- 15. Операции над матрицами и их свойства.
- 16. Определители 2-го, 3-го и выше порядков квадратных матриц, свойства определителей и правила их вычисления.
- 17. Системы линейных алгебраических уравнений и их применение в психологии (социологии).
- 18. Решение систем линейных алгебраических уравнений методом Крамера.
- 19. Решения систем линейных алгебраических уравнений общего вида методом Гаусса.
- 20. Понятие числовой функции как отображения числовых множеств.
- 21. Основные сведения о функциях, примеры функций из психологии и социологии
- 22. Элементарные функции их основные свойства.
- 23. Предел функции, его свойства и правила вычисления отдельных видов приделов.

- 24. Непрерывные функции и их свойства.
- 25. Задачи, приводящие к понятию производной.
- 26. Определение производной, её геометрическая и функциональная интерпретация.
- 27. Основные правила дифференциального исчисления.
- 28. Применение производной в исследовании функций (монотонность, экстремумы функции) и построении их графиков.
- 29. Понятие неопределённого и определенного интегралов.
- 30. Правила интегрирования отдельных классов функций.
- 31. Понятие несобственного интеграла с бесконечными пределами интегрирования с правила его вычисления.
- 32. Предмет комбинаторики, комбинаторные правила сложения и умножения.
- 33. Размещения, сочетания и перестановки элементов конечных множеств без повторов.
- 34. Размещения, сочетания и перестановки элементов конечных множеств с повторами.
- 35. Предмет теории вероятностей и ее роль в изучении массовых случайных психологических (социологических) явлений.
- 36. Случайные события, их классификация и операции, выполняемые над ними.
- 37. Классическая, геометрическая и статистическая вероятности.
- 38. Совместные, несовместные случайные события и теоремы сложения их вероятностей.
- 39. Понятия условной вероятности, зависимости и независимости случайных событий и теоремы умножения их вероятностей.
- 40. Формула полной вероятности и формулы Байеса.
- 41. Повторные независимые испытания, формулы Бернулли и Пуассона.
- 42. Локальная и интегральная теоремы Лапласа.
- 43. Дискретные и непрерывные случайные величины и их основные числовые характеристики.
- 44. Функция распределения и плотность распределения непрерывных случайных величин и их свойства.
- 45. Законы распределения дискретных случайных величин.
- 46. Законы распределения непрерывных случайных величин.

2. Типовые варианты задач для подготовки к контрольным работам по дисциплине «Основы высшей математики»

В контрольную работу N 1 включены задачи по материалу раздела 1 «Элементы и основные задачи логики высказываний» и раздела 2 «Элементы теории множеств и их применение ...».

Контрольная работа № 1

Вариант 1

- 1. Проверить будет ли логическая формула $(p \to q) \land (q \to p)$ общезначима.
- 2. Даны подмножества $A = \{2,4,6,8,9,10\}, B = \{1,3,4,7,9\}\}, C = \{4,5,6,7,9\}$ универсального множества $U = \{1,2,3,4,5,6,7,8,9,10\}$. Найти $(A \cap B) \cup \overline{C}$.
- 3. Задано отображение $f: X \to Y$, где $X = \{a, b, c, d, e\}$, $Y = \{g, h, k, l\}$,

$$f(a) = l$$
, $f(b) = l$, $f(c) = g$, $f(d) = h$, $f(e) = k$.

Найти образ подмножества $\{a,c,e\}$, полные прообразы $f^{-1}(l)$, $f^{-1}(h)$ и определить вид отображения $f:X\to Y$.

4. Найти произведение *R*·*S* бинарных отношений

$$R = \{ (1,3), (1,4), (3,2), (3,4), (2,5) \}$$
 и $S = \{ (3,2), (3,1)(4,5), (4,1), (5,1), (5,4) \}$, определенных на множестве $M = \{ 1,2,3,4,5 \}$.

- 5. С помощью характеристических векторов $x_A = (1,0,1,0,1,0)$, $x_B = (0,1,1,0,0,1)$ подмножеств A и B из множества $\{1,2,3,4,5,6\}$ найти $(A \cap B) \cup \overline{B}$.
- 6. В заданном универсальном мультимножестве $U = \{6a, 6b, 6c, 6d, 6e, 6f\}$ найти подмножество $(\overline{A} \setminus B) \cap A$, если $A = \{3a, 2c, 4d, e\}$ и $B = \{2a, 3b, 2e, 2f\}$.

Вариант 2

- 1. Проверить будет ли логическая формула $\,\overline{p} \to (p \to q)\,$ общезначима.
- 2. Даны подмножества $A = \{2,4,6,8,9,10\}$, $B = \{1,3,4,7,9\}$ }, $C = \{4,5,6,7,9\}$ универсального множества $U = \{1,2,3,4,5,6,7,8,9,10\}$. Найти $(A \setminus B) \cap \overline{C}$.
- 3. Задано отображение $f: X \to Y$, где $X = \{a, b, c, d, e\}$, $Y = \{g, h, k, l\}$,

$$f(a) = g, f(b) = h, f(c) = g, f(d) = k, f(e) = l.$$

Найти образ подмножества $\{b,d,e\}$, полные прообразы $f^{-1}(g)$, $f^{-1}(k)$ и определить вид отображения $f:X\to Y$.

4. Найти произведение $R \cdot S$ бинарных отношений

$$R = \{ (1,2), (1,4), (2,3), (3,4), (3,5) \} \text{ и } S = \{ (2,2), (2,1)(4,2), (4,1), (5,2), (5,3) \},$$
 определенных на множестве $M = \{ 1,2,3,4,5 \}$

- 5. С помощью характеристических векторов $x_A = (0,0,1,1,1,0)$ и $x_B = (0,1,0,0,1,1)$ подмножеств A и B из множества $\{1,2,3,4,5,6\}$ найти $(A \cup B) \setminus \overline{B}$.
- 6. В заданном универсальном мультимножестве $U = \{6a, 5b, 4c, 6d, 3e, 4f\}$ найти мульти подмножество $(\overline{A} \cap B) \setminus A$, если $A = \{2a, c, 3d, 2e\}$ и $B = \{3a, 2b, e, 3f\}$.

- 1. Проверить будет ли логическая формула $\bar{p} \to p$ общезначима.
- 2. Даны подмножества $A = \{2,4,6,8,9,10\}$, $B = \{1,3,4,7,9\}$ }, $C = \{4,5,6,7,9\}$ универсального множества $U = \{1,2,3,4,5,6,7,8,9,10\}$. Найти $A \cup (B \setminus \overline{C})$.
- 3. Задано отображение $f: X \to Y$, где $X = \{a, b, c, d, e\}$, $Y = \{g, h, k, l\}$,

$$f(a) = g$$
, $f(b) = h$, $f(c) = g$, $f(d) = k$, $f(e) = l$.

Найти образ подмножества $\{b,d,e\}$, полные прообразы $f^{-1}(g)$, $f^{-1}(k)$ и определить вид отображения $f:X\to Y$.

4. Найти произведение *R*·*S* бинарных отношений

$$R = \{ (1,2), (1,3), (3,1), (3,2), (2,5) \}$$
 и $S = \{ (1,2), (3,1)(4,3), (4,2), (5,1), (5,3) \}$, определенных на множестве $M = \{ 1,2,3,4,5 \}$

- 5. С помощью характеристических векторов $x_A = (1,1,0,1,0,1)$ и $x_B = (0,1,1,1,1,0)$ подмножеств A и B из множества $\{1,2,3,4,5,6\}$ найти $(B \setminus A) \cap \overline{B}$.
- 6. В заданном универсальном мультимножестве $U = \{3a, 3b, 4c, 5d, 3e, 6f\}$ найти подмножество $(A \cup B) \setminus \overline{A}$, если $A = \{2b, c, 2d, 2f\}$ и $B = \{a, 3b, 2e, 2f\}$.

Задание 4

- 1. Проверить будет ли логическая формула $(p \land q) \to p$ общезначима.
- 2. Даны подмножества $A = \{2,4,6,8,9,10\}$, $B = \{1,3,4,7,9\}$ }, $C = \{4,5,6,7,9\}$ универсального множества $U = \{1,2,3,4,5,6,7,8,9,10\}$. Найти $(A \cap B) \cup (B \cap C)$.
- 3. Задано отображение $f: X \to Y$, где $X = \{a, b, c, d, e\}$, $Y = \{g, h, k, l, m\}$,

$$f(a) = h$$
, $f(b) = l$, $f(c) = g$, $f(d) = k$, $f(e) = m$.

Найти образ подмножества $\{b,c,e\}$, полные прообразы $f^{-1}(g), f^{-1}(k)$ и определить вид отображения $f:X\to Y$.

4. Найти произведение *R*·*S* бинарных отношений

$$R = \{ (1,2), (1,3), (2,3), (3,4), (2,5) \}$$
 и $S = \{ (2,2), (3,2)(4,5), (4,2), (5,2), (5,3) \}$, определенных на множестве $M = \{ 1,2,3,4,5 \}$.

- 5. С помощью характеристических векторов $x_A = (1,0,1,0,1,1)$ и $x_B = (1,1,0,1,0,0)$ подмножеств A и B из множества $\{1,2,3,4,5,6\}$ найти $(B \setminus \overline{A}) \cup \overline{B}$.
- 6. В заданном универсальном мультимножестве $U = \{3a, 5b, 5c, 5d, 5e, 5f\}$ найти подмножество $(A \cup \overline{B}) \setminus \overline{B}$, если $A = \{3b, 2, 3d, 2f\}$ и $B = \{2a, 2b, 3e, f\}$.

Задание 5

- 1. Проверить будет ли логическая формула $(p \to q) \lor (q \to p)$ общезначима.
- 2. Даны подмножества $A = \{2,4,6,8,9,10\}$, $B = \{1,3,4,7,9\}$ }, $C = \{4,5,6,7,9\}$ универсального множества $U = \{1,2,3,4,5,6,7,8,9,10\}$. Найти $A \cap (\overline{B} \cup C)$.
- 3. Задано отображение $f: X \to Y$, где $X = \{a, b, c, d, e\}$, $Y = \{g, h, k, l, m\}$,

$$f(a) = k$$
, $f(b) = g$, $f(c) = h$, $f(d) = m$, $f(e) = l$.

Найти образ подмножества $\{c,d,e\}$, полные прообразы $f^{-1}(h)$, $f^{-1}(m)$ и определить вид отображения $f:X\to Y$.

4. Найти произведение *R*·*S* бинарных отношений

$$R = \{ (1,3), (1,4), (3,2), (3,4), (2,5) \}$$
 и $S = \{ (3,2), (2,1)(4,2), (4,3), (5,1) \},$ определенных на множестве $M = \{1,2,3,4,5\}.$

- 5. С помощью характеристических векторов $x_A = (0,0,1,1,1,1)$ и $x_B = (1,1,1,1,0,0)$ подмножеств A и B из множества $\{1,2,3,4,5,6\}$ найти $(B \cup A) \cap \overline{B}$.
- 6. В заданном универсальном мультимножестве $U = \{6a, 5b, 6c, 5d, 6e, 5f\}$ найти подмножество $(A \cup B) \cap \overline{A}$, если $A = \{2b, 2d, 2e, 2f\}$ и $B = \{2a, 3d, 4e, 3f\}$.

Задание 6

- 1. Проверить будет ли логическая формула $(p \lor q) \to p$ общезначима.
- 2. Даны подмножества $A = \{2,4,6,8,9,10\}$, $B = \{1,3,4,7,9\}$ }, $C = \{4,5,6,7,9\}$ универсального множества $U = \{1,2,3,4,5,6,7,8,9,10\}$. Найти $(\overline{A} \setminus B) \cup (\overline{B} \cap C)$.
- 3. Задано отображение $f: X \to Y$, где $X = \{a, b, c, d, e\}$, $Y = \{g, h, k, l\}$,

$$f(a) = l$$
, $f(b) = k$, $f(c) = k$, $f(d) = h$, $f(e) = g$.

Найти образ подмножества $\{a,c,d\}$, полные прообразы $f^{-1}(l)$, $f^{-1}(k)$ и определить вид отображения $f:X\to Y$.

4. Найти произведение *R*·*S* бинарных отношений

$$R = \{ (1,3), (1,4), (2,2), (2,4), (2,5) \}$$
 и $S = \{ (2,3), (3,1)(4,5), (4,1), (5,3), (5,1) \}$, определенных на множестве $M = \{ 1,2,3,4,5 \}$.

- 5. С помощью характеристических векторов $x_A = (1,1,0,0,1,1)$ и $x_B = (0,1,1,1,1,0)$ подмножеств A и B из множества $\{1,2,3,4,5,6\}$ найти $(A \cap B) \cap \overline{B}$.
- 6. В заданном универсальном мультимножестве $U = \{4a, 4b, 4c, 4d, 4e, 4f\}$ найти подмножество $(A \cup B) \cap \overline{A}$, если $A = \{2a, 2b, 2d, 2f\}$ и $B = \{a, b, e, f\}$.

Задание 7

- 1. Проверить будет ли логическая формула $q \to (p \lor q)$ общезначима.
- 2. Даны подмножества $A = \{2,4,6,8,9,10\}$, $B = \{1,3,4,7,9\}$ }, $C = \{4,5,6,7,9\}$ универсального множества $U = \{1,2,3,4,5,6,7,8,9,10\}$. Найти $(A \setminus C) \cup (\overline{B} \cap C)$.
- 3. Задано отображение $f: X \to Y$, где $X = \{a, b, c, d, e\}, Y = \{g, h, k, l, n\},$

$$f(a) = n$$
, $f(b) = g$, $f(c) = l$, $f(d) = k$, $f(e) = h$.

Найти образ подмножества $\{a,d,c\}$, полный прообраз подмножества $\{g,k,n\}$ и определить вид отображения $f:X\to Y$.

4. Найти произведение *R*·*S* бинарных отношений

$$R = \{ (1,3), (1,4), (3,2), (3,4), (2,5) \}$$
 и $S = \{ (3,2), (3,1)(2,5), (4,1), (5,1), (5,2) \}$, определенных на множестве $M = \{ 1,2,3,4,5 \}$.

- 5. С помощью характеристических векторов $x_A = (1,1,0,0,1,1)$ и $x_B = (1,0,1,1,1,0)$ подмножеств A и B из множества $\{1,2,3,4,5,6\}$ найти $(B\setminus \overline{A})\cap \overline{A}$.
- 6. В заданном универсальном мультимножестве $U = \{3a, 3b, 3c, 3d, 3e, 3f\}$ найти подмножество $(A \cap B) \setminus (\overline{B} \cap \overline{A})$, если $A = \{b, c, d, f\}$ и $B = \{a, 3b, 2c, 2f\}$.

Вариант 8

- 1. Проверить будет ли логическая формула $(p \land q) \to q$ общезначима.
- 2. Даны подмножества $A = \{2,4,6,8,9,10\}$, $B = \{1,3,4,7,9\}$ }, $C = \{4,5,6,7,9\}$ универсального множества $U = \{1,2,3,4,5,6,7,8,9,10\}$. Найти $(A \cap \overline{C}) \cup (B \setminus \overline{C})$.
- 3. Задано отображение $f: X \to Y$, где $X = \{a, b, c, d, e\}$, $Y = \{g, h, k\}$,

$$f(a) = k$$
, $f(b) = h$, $f(c) = g$, $f(d) = h$, $f(e) = k$.

Найти образ подмножества $\{a,c,e\}$, полный прообраз подмножества $\{g,k\}$, $f^{-1}(k)$ и определить вид отображения $f:X\to Y$.

4. Найти произведение $R \cdot S$ бинарных отношений

$$R = \{ (2,3), (2,4), (3,2), (4,4), (2,5) \}$$
 и $S = \{ (3,2), (3,1)(4,5), (5,1), (5,4) \}$, определенных на множестве $M = \{ 1,2,3,4,5 \}$.

- 5. С помощью характеристических векторов $x_A = (0,1,0,1,1,1)$ и $x_B = (0,1,0,1,1,1)$ подмножеств A и B из множества $\{1,2,3,4,5,6\}$ найти $(B \bigcup A) \cap (\overline{B} \cap A\}$.
- 6. В заданном универсальном мультимножестве $U = \{2a, 3b, 3c, 5d, 3e, 6f\}$ найти подмножество $(\overline{A} \cap \overline{B}) \setminus (A \cap B)$, если $A = \{b, 2c, d, 2f\}$ и $B = \{a, b, e, f\}$.

Задание 9

- 1. Проверить будет ли логическая формула $(p \to q) \lor (p \to \overline{q})$ общезначима.
- 2. Даны подмножества $A = \{2,4,6,8,9,10\}$, $B = \{1,3,4,7,9\}$ }, $C = \{4,5,6,7,9\}$ универсального множества $U = \{1,2,3,4,5,6,7,8,9,10\}$. Найти $(A \setminus \overline{B}) \cap (B \setminus \overline{C})$.
- 3. Задано отображение $f: X \to Y$, где $X = \{a, b, c, d, e\}$, $Y = \{g, h, k, l, m, n\}$,

$$f(a) = g$$
, $f(b) = h$, $f(c) = l$, $f(d) = k$, $f(e) = m$.

Найти образ подмножества $\{c,d,e\}$, полные прообразы $f^{-1}(m)$, $f^{-1}(l)$, $f^{-1}(k)$ и определить вид отображения $f:X\to Y$.

4. Найти произведение *R*·*S* бинарных отношений

$$R = \{ (1,3), (2,4), (3,2), (3,4), (2,5) \}$$
 и $S = \{ (3,2), (3,1)(4,5), (4,1), (5,1), (2,4) \},$ определенных на множестве $M = \{ 1,2,3,4,5 \}.$

- 5. С помощью характеристических векторов $x_A = (1,1,1,1,0,0)$ и $x_B = (0,0,1,1,1,1)$ подмножеств A и B из множества $\{1,2,3,4,5,6\}$ найти $(B \setminus A) \cup (\overline{B} \setminus \overline{A})$.
- 6. В заданном универсальном мультимножестве $U = \{4a, 4b, 4c, 4d, 4e, 4f\}$ найти подмножество $(A \cup B) \setminus \overline{A}$, если $A = \{2b, c, 2d, 2e\}$ и $B = \{3a, 2b, 4e, 2f\}$.

Задание 10

- 1. Проверить будет ли логическая формула $(p \lor q) \to (\bar{p} \land \bar{q})$ общезначима или выполнима.
- 2. Даны подмножества $A = \{2,4,6,8,9,10\}$, $B = \{1,3,4,7,9\}$ }, $C = \{4,5,6,7,9\}$ универсального множества $U = \{1,2,3,4,5,6,7,8,9,10\}$. Найти $(\overline{A} \cap \overline{B}) \setminus C$.
- 3. Задано отображение $f: X \to Y$, где $X = \{a, b, c, d, e\}$, $Y = \{g, h\}$,

$$f(a) = g$$
, $f(b) = h$, $f(c) = g$, $f(d) = h$, $f(t) = g$.

Найти образ подмножества $\{a,b,d,e\}$, полные прообразы $f^{-1}(g), f^{-1}(h)$ и определить вид отображения $f:X\to Y$.

4. Найти произведение *R*·*S* бинарных отношений

$$R = \{(3,1), (1,4), (3,2), (3,4), (2,5)\}$$
 и $S = \{(1,2), (3,1)(4,5), (4,1), (2,1), (5,4)\}$, определенных на множестве $M = \{1,2,3,4,5\}$.

5. С помощью характеристических векторов $x_A = (0,1,1,1,0,1)$ и $x_B = (0,1,1,1,0,0)$ подмножеств A и B из множества $\{1,2,3,4,5,6\}$ найти $(B \cap A) \cap (\overline{B} \setminus A)$.

6. В заданном универсальном мультимножестве $U = \{3a, 3b, 3c, 3d, 3e, 3f\}$ найти подмножество $(A \cap B) \setminus (\overline{A} \cap \overline{B})$, если $A = \{2a, 2b, c, 2d, 2f\}$ и $B = \{a, 3b, 4e, 2f\}$.

В контрольную работу № 2 включены задачи по материалу раздела 3 «Элементы линейной алгебры и их практическое использование» и первым трем подразделам четвертого раздела «Основы математического анализа и его использование ...». Задачи на нахождение предела включают простейшие случаи раскрытия неопределенностей вида:

- $\frac{0}{0}$ и $\frac{\infty}{\infty}$, возникающих при вычислении предела отношения двух многочленов и иррациональных выражений;
- 1^{∞} , возникающих при вычислении пределов показательно-степенных функций специального вида, которые раскрываются с помощью 2-го замечательного предела;
- $\frac{0}{0}$, возникающих при вычислении пределов тригонометрических выражений, которые раскрываются с помощью 1-го замечательного предела.

При составлении контрольных заданий по указанным темам не обязательно включать задачи всех видов по нахождению пределов и производных. Можно ограничиться отдельными задачами с целью сокращения времени для проведения контрольных работ.

Контрольная работа № 2

- 1. Для данных матриц $A = \begin{bmatrix} 2 & -1 & -3 \\ 8 & -7 & -6 \\ -3 & 4 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & -1 & -2 \\ 3 & -5 & 4 \\ 1 & 2 & 1 \end{bmatrix}$ вычислить AB^T .
- 2. Для данного определителя $\begin{vmatrix} 1 & 1 & -2 \\ 3 & 6 & -2 \\ 1 & 0 & 6 \end{vmatrix}$ найти минор элемента a_{21} , его алгебраическое дополнение и вычислить определитель разложением по 3-й строке.

3. Решить данную систему линейных уравнений $\begin{cases} 2x_1 + x_2 + 3x_3 = 7, \\ 2x_1 + 3x_2 + x_3 = 1, \\ 3x_1 + 2x_2 + x_3 = 6. \end{cases}$

4. Найти предел $\lim_{x \to \infty} \frac{x^2 + 2x - 3}{x^2 - 5x + 4}$.

5. Найти предел $\lim_{x\to 1} \frac{x^3 - 4x^2 + 28x}{5x^3 + 3x^2 + x - 1}$

6. Найти предел $\lim_{x\to\infty} \left(\frac{2x+2}{2x-1}\right)^{3x}$.

- 7. Вычислить предел $\lim_{x \to -3} \frac{\sqrt{x+10} \sqrt{4-x}}{2x^2 x 21}$.
- 8. Найти предел $\lim_{x\to 1} \frac{1-\cos 8x}{3x^2}$
- 9. Вычислить производную функции $y = \frac{3}{x} + \sqrt[5]{x^2} 4x^3$.
- 10. Вычислить производную функции $y = \frac{\ln(5x-3)}{4 \lg x}$.

- 1. Для данных матриц $A = \begin{bmatrix} 3 & 5 & -6 \\ 2 & 4 & 3 \\ -3 & 1 & 1 \end{bmatrix}, \ B = \begin{bmatrix} 2 & 8 & -5 \\ 3 & -1 & 0 \\ 4 & 5 & -3 \end{bmatrix}$ найти BA.
- 2. Для данного определителя $\begin{vmatrix} 4 & -5 & -1 \\ -3 & 2 & 8 \\ -2 & 0 & 1 \end{vmatrix}$ найти минор, алгебраическое допол-

нение элемента a_{12} и вычислить определитель разложением по 2-му столбцу.

- 3. Найти решение системы линейных уравнений $\begin{cases} 3x_1-2x_2+4x_3=2,\\ 3x_1+4x_2-2x_3=9,\\ 2x_1-x_2-x_3=10. \end{cases}$
- 4. Найти предел $\lim_{x\to\infty} \frac{-3x^4+x^2+x}{x^4+3x-2}$.
- 5. Найти предел $\lim_{x\to 3} \frac{x^2+x-12}{\sqrt{x-2}-\sqrt{4-x}}$.
- 6. Найти предел $\lim_{x\to\infty} \left(\frac{2x+5}{2x+1}\right)^{5x}$.
- 7. Найти предел $\lim_{x\to 0} \frac{\cos x \cos 5x}{2x^2}$.
- 8. Найти предел $\lim_{x \to 0} \frac{x^2 2x + 1}{2x^2 7x + 5}$.
- 9. Вычислить производную функции $y = 2x^5 \frac{4}{x^3} + 3\sqrt{x}$.
- 10. Вычислить производную функции $y = \frac{\ln{(7x+2)}}{5\cos{2x}}$.

Вариант 3

9

1. Для данных матриц $A = \begin{bmatrix} -6 & 1 & 11 \\ 9 & 2 & 5 \\ 0 & 3 & 7 \end{bmatrix}, B = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 2 & 7 \\ 1 & -3 & 2 \end{bmatrix}$ найти AB^T .

2. Для данного определителя $\begin{vmatrix} 3 & 1 & 2 \\ 5 & 0 & 1 \\ -1 & 3 & 2 \end{vmatrix}$ найти минор и алгебраическое дополне-

ние элемента $a_{3\,2}$ вычислить его разложением по 2-й строке.

- 3. Найти решение данной системы линейных уравнений $\begin{cases} 3x_1-2x_2-5x_3=&5,\\ 2x_1+3x_2-4x_3=&12,\\ x_1-2x_2+3x_3=&-1. \end{cases}$
- 4. Найти предел $\lim_{x\to 3} \frac{6+x-x^2}{x^3-27}$
- 5. Найти предел $\lim_{x \to \infty} \frac{-x^2 + 3x + 1}{3x^2 + x 5}$
- 6. Найти предел $\lim_{x \to 1} \frac{\sqrt{3+2x} \sqrt{x+4}}{3x^2 4x + 1}$.
- 7. Найти предел $\lim_{x\to\infty} \left(\frac{2x}{2x-3}\right)^{3x}$
- 8. Найти предел $\lim_{x\to 0} \frac{\operatorname{tg} \ x \sin x}{3x^2}$.
- 9. Найти производную функции $y = \frac{3}{x} 4x^3 + \sqrt[5]{x^2}$.
- 10. Найти производную функции $y = \frac{\cos^2 3x}{\operatorname{tg}(3x 4)}$.

Вариант 4

- 1. Для данных матриц $A = \begin{bmatrix} 2 & 1 & -1 \\ 2 & -1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 6 & 0 \\ 2 & 4 & -6 \\ 1 & -2 & 3 \end{bmatrix}$ найти $B^T A$.
- 2. Для определителя $\begin{vmatrix} 4 & -5 & -1 \\ -3 & 2 & -2 \\ -2 & 4 & 0 \end{vmatrix}$ найти минор, алгебраическое дополнение

элемента a_{23} и вычислить его разложением по 3-му столбцу.

- 3. Найти решение данной системы линейных уравнений $\begin{cases} 4x_1+x_2+4x_3=19,\\ 2x_1-x_2+2x_3=11,\\ x_1+x_2+2x_3=8. \end{cases}$
- 4. Найти предел $\lim_{x\to 1} \frac{2x^2 x 1}{3x^2 x 2}$.
- 5. Найти предел $\lim_{x\to\infty} \frac{4x^2 + 5x 7}{2x^2 x + 10}$.
- 6. Найти предел $\lim_{x \to -1} \frac{3x^2 + 4x + 1}{\sqrt{x+3} \sqrt{5+3x}}$.

- 7. Найти предел $\lim_{x\to\infty} \left(\frac{x-1}{x+4}\right)^{3x+2}$.
- 8. Найти предел $\lim_{x\to 0} \frac{\operatorname{tg } 2x \sin 2x}{x^2}$.
- 9. Найти производную функции $y = -\frac{2}{x} + 3x^4 + \sqrt[3]{x^5}$.
- 10. Найти производную функции $y = \frac{\sin(5x+1)}{\tan(3x-2)}$.

- 1. Для данных матриц $A = \begin{bmatrix} 3 & 1 & 2 \\ -1 & 0 & 2 \\ 1 & 2 & 1 \end{bmatrix}, \ B = \begin{bmatrix} 0 1 & 2 \\ 2 & 1 & 1 \\ 3 & 7 & 1 \end{bmatrix}$ найти AB.
- 2. Для данного определителя $\begin{vmatrix} 3 & 5 & 2 \\ 2 & 1 & 0 \\ 1-2 & 4 \end{vmatrix}$ найти минор, алгебраическое дополне-

ние элемента a_{21} и вычислить определитель разложением по 2-й строке.

- 3. Найти решение данной системы линейных уравнений $\begin{cases} 3x_1 x_2 + 4x_3 = 12, \\ 3x_1 + 4x_2 2x_3 = 6, \\ 2x_1 x_2 x_3 = -9. \end{cases}$
- 4. Найти предел $\lim_{x\to 2} \frac{2x^2-7x+4}{x^2-5x+6}$.
- 5. Найти предел $\lim_{x\to\infty} \frac{3x^2 + 2x + 9}{2x^2 x + 4}$.
- 6. Найти предел $\lim_{x\to 5} \frac{\sqrt{2x+1}-\sqrt{x+6}}{2x^2-7x-15}$.
- 7. Найти предел $\lim_{x\to\infty} \left(\frac{x-2}{x+1}\right)^{2x+3}$.
- 8. Найти предел $\lim_{x \to 0} \left(\frac{1}{\operatorname{tg } x} \frac{1}{-\sin x} \right)$.
- 9. Найти производную функции $y = 7\sqrt{x} \frac{2}{x^3} 3x^3$.
- 10. Найти производную функции $y = \frac{\ln (4x+5)}{2 \cot 3x}$.

Вариант 6

1. Для данных матриц $A = \begin{bmatrix} 2 & 3 & 2 \\ 1 & 3 - 1 \\ 4 & 1 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 2 - 1 \\ 3 & 1 & 2 \\ 5 & 3 & 0 \end{bmatrix}$ найти B^TA .

2. Для данного определителя $\begin{vmatrix} 3 & 2 & 0 \\ 4 & 3-5 \\ 1-3 & 4 \end{vmatrix}$ найти минор, алгебраическое дополне-

ние элемента a_{32} и вычислить определитель разложением по 1-му столбцу.

- 3. Найти решение данной системы линейных уравнений $\begin{cases} 8x_1 + 3x_2 6x_3 = -4, \\ x_1 + x_2 x_3 = 2, \\ 4x_1 + x_2 3x_3 = -5. \end{cases}$
- 4. Найти предел $\lim_{x\to 3} \frac{12+x-x^2}{x^3-27}$.
- 5. Найти предел $\lim_{x\to\infty} \frac{2x^3 + 7x 2}{3x^3 x 4}$.
- 6. Найти предел $\lim_{x\to 0} \frac{\sqrt{x^2+2}-\sqrt{2}}{\sqrt{x^2+1}-1}$.
- 7. Найти предел $\lim_{x\to\infty} \left(\frac{3x-4}{3x+2}\right)^{2x}$.
- 8. Найти предел $\lim_{x\to 0} \frac{\sin 7x + \sin 3x}{x \sin x}$.
- 9. Найти производную функции $y = 7x + \frac{5}{x^2} \sqrt[7]{x^4}$.
- 10. Найти производную функции $y = \frac{\ln{(11x+3)}}{\cos{5x}}$.

Вариант 7

- 1. Для данных матриц $A = \begin{bmatrix} 6 & 7 & 3 \\ 3 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & 0 & 5 \\ 4 1 2 \\ 4 & 3 & 7 \end{bmatrix}$ найти $B^T A$.
- 2. Для данного определителя $\begin{vmatrix} 2-1 & 2 \\ 2-1 & 0 \\ 1 & 2 & 3 \end{vmatrix}$ найти минор, алгебраическое дополне-

ние элемента a_{23} и вычислить определитель разложением по 3-му столбцу.

- 3. Найти решение данной системы линейных уравнений $\begin{cases} 4x_1+x_2-3x_3=&9,\\ x_1+x_2-x_3=&-2,\\ 8x_1+3x_2-6x_3=&12. \end{cases}$
- 4. Найти предел $\lim_{x\to 1/3} \frac{3x^2+2x-1}{27x^3-1}$.
- 5. Найти предел $\lim_{x\to\infty} \frac{3x^4 6x + 2}{x^4 + 4x 3}$.
- 6. Найти предел $\lim_{x \to 0} \frac{3x}{\sqrt{1+x} \sqrt{1-x}}$.

- 7. Найти предел $\lim_{x\to\infty} \left(\frac{x}{x+1}\right)^{2x-3}$.
- 8. Найти предел $\lim_{x\to 0} \frac{\cos 2x \cos 4x}{3x^2}$.
- 9. Найти производную функции $y = 5x^2 \sqrt[3]{x^4} + \frac{4}{x^3}$.
- 10. Найти производную функции $y = \frac{\operatorname{tg}(x-2)}{\ln(x+3)}$.

- 1. Для данных матриц $A = \begin{bmatrix} -2 & 3 & 4 \\ 3-1-4 \\ -1 & 2 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 3 & 1 \\ 0 & 6 & 2 \\ 1 & 9 & 2 \end{bmatrix}$ найти B^TA .
- 2. Для данного определителя $\begin{vmatrix} 0 & 4 & 1 \\ -4 & 2 & 1 \\ 1 & 3 & 4 \end{vmatrix}$ найти минор, алгебраическое допол-

нение элемента a_{12} и вычислить определитель разложением по 1-й строке.

- 3. Найти решение данной системы линейных уравнений $\begin{cases} 2x_1 + 3x_2 4x_3 = 33, \\ 7x_1 5x_2 = 24, \\ 4x_1 + 11x_3 = 39. \end{cases}$
- 4. Найти предел $\lim_{x\to -1} \frac{x^2-4x-5}{x^2-2x-3}$.
- 5. Найти предел $\lim_{x\to\infty} \frac{3x^2 4x + 2}{6x^2 + 5x + 1}$.
- 6. Найти предел $\lim_{x\to -1} \frac{\sqrt{5x+1}-2}{\sqrt{8-x}-3}$.
- 7. Найти предел $\lim_{x\to\infty} \left(\frac{x+3}{x}\right)^{-5x}$.
- 8. Найти предел $\lim_{x\to 0} \frac{\operatorname{tg} 3x \sin 3x}{2x^2}$.
- 9. Найти производную функции $y = 3x^5 \frac{3}{x} \sqrt{x^3}$.
- 10. Найти производную функции $y = \frac{\cos(7x-1)}{\ln(2x+5)}$.

Вариант 9

1. Для данных матриц $A = \begin{bmatrix} 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 6 & 5 & 2 \\ 0 & 9 & 2 \\ 4 & 5 & 1 \end{bmatrix}$ найти B^TA .

2. Для данного определителя $\begin{vmatrix} 0 & -2 & 1 \\ 4 & 2-3 \\ -8 & 3-1 \end{vmatrix}$ найти минор, алгебраическое до-

полнение элемента a_{21} и вычислить определитель разложением по 1-му столбцу.

- 3. Найти решение данной системы линейных уравнений $\begin{cases} 2x_1+3x_2+4x_3=&12,\\ 7x_1-5x_2+&x_3=-33,\\ 4x_1&+x_3=&-7. \end{cases}$
- 4. Найти предел $\lim_{r \to -1} \frac{3x^2 + 2x 1}{-r^2 + r + 2}$.
- 5. Найти предел $\lim_{x\to\infty} \frac{8x^4-4x+3}{2x^4+1}$. 6. Найти предел $\lim_{x\to -4} \frac{\sqrt{x+12}-\sqrt{4-x}}{x^2+2x-8}$.
- 7. Найти предел $\lim_{x\to\infty} \left(\frac{x-7}{x}\right)^{2x+1}$.
- 8. Найти предел $\lim_{x\to 0} \frac{\sin 3x}{\tan 5x}$.
- 9. Найти производную функции $y = \sqrt[3]{x^7} 4x^6 + \frac{3}{x}$.
- 10. Найти производную функции $y = \frac{\ln (5x 3)}{\tan 2x}$.

- 1. Для данных матриц $A = \begin{bmatrix} 2 & 6 & 1 \\ 1 & 3 & 2 \\ 0 & 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & -3 & 2 \\ -4 & 0 & 5 \\ 3 & 2 3 \end{bmatrix}$ найти B^TA .
- 2. Для данного определителя $\begin{vmatrix} 1 & 2 & -3 \\ 3-2 & 0 \\ 3 & 2 & 2 \end{vmatrix}$ найти минор, алгебраическое допол-

нение элемента a_{31} и вычислить определитель разложением по 3-му столбцу.

- 3. Найти решение данной системы линейных уравнений $\begin{cases} 3x_1-2x_2+4x_3=21,\\ 3x_1+4x_2-2x_3=9,\\ 2x_1-x_2-x_3=10. \end{cases}$
- 4. Найти предел $\lim_{x\to 3} \frac{3x^2 11x + 6}{2x^2 5x 3}$.
- 5. Найти предел $\lim_{x \to \infty} \frac{8x^2 + 4x 5}{4x^2 3x + 2}$.
- 6. Найти предел $\lim_{x \to -2} \frac{\sqrt{2-x} \sqrt{x+6}}{x^2 x 6}$.

- 7. Найти предел $\lim_{x\to\infty} \left(\frac{2x+1}{2x-1}\right)^{x+2}$.
- 8. Найти предел $\lim_{x \to 0} \frac{1 \cos 4x}{2x^2}$.
- 9. Найти производную функции $y = 8x^2 + \sqrt[3]{x^4} \frac{4}{x}$.
- 10. Найти производную функции $y = \frac{\sin(5x-3)}{\lg(2x+1)}$.

В контрольную работу № 3 включены задачи по материалу подразделов 4.3 и 4.4 раздела 4 «Основы математического анализа и его использование …» и разделу 5 «Элементы теории вероятностей и их применение …».

Контрольная работа № 3

Вариант 1

- 1. Найти точки локальных экстремумов функции $y = \frac{x^2 2x + 2}{x 1}$ и вычислить ее экстремальные значения.
- 2. Вычислить неопределенный интеграл $\int \frac{3 + \sqrt[3]{x^2} 2x}{\sqrt{x}} dx$.
- 3. Вычислить определенный интеграл $\int\limits_{1}^{2} \ln x \, dx.$
- 4. Вычислить площадь плоской фигуры, ограниченной графиками функций $y = x^2 + 6x + 7$, y = x + 7.
- 5. Событие S_i i-й станок вышел из строя, i=1,2,3. Записать в виде формулы событие S большинство станков вышло из строя, но производство не остановлено. Найти вероятность события S, если вероятности выхода каждого станка из строя равны 0,25.
- 6. На фабрике 3 станка производят 25 %, 30 % и 45 % всех изделий соответственно. В их продукции брак составляет 5 %, 4 % и 2 % соответственно. Найти вероятность того, что случайно выбранное изделие дефектно?
- 7. Из ящика, содержащего 10 шаров, 6 из которых черные, выбираются 3 шара. Найти вероятность события среди выбранных шаров 2 черных.
- 8. Бросаются одновременно две монеты, описать пространство элементарных событий данного эксперимента и найти вероятность выпадения орла на каждой монете.

- 1. Найти точки локальных экстремумов функции $y = \frac{4x x^2 4}{x}$ и вычислить ее экстремальные значения.
- 2. Вычислить неопределенный интеграл $\int \frac{2x^3 \sqrt{x^5} + 1}{\sqrt{x}}$.
- 3. Вычислить определенный интеграл $\int_{1}^{6} (7 x \frac{6}{x}) dx$.
- 4. Вычислить площадь плоской фигуры, ограниченной графиками функций $y = (x-1)^3$, y = 4x 4.
- 5. Событие T_i i-й нападающий тройки нападения хоккейной команды получил травму. Записать в виде формулы событие T получил травму только один нападающий, и найти его вероятность, если вероятность получения травмы каждым игроком равна 0,2.
- 6. На фабрике 3 станка производят 25 %, 35 % и 40 % всех изделий соответственно. Брак в их продукции составляет 4%, 2%, 5%. Найти вероятность того, что оно было произведено на втором станке, если случайно выбранное изделие оказалось дефектным.
- 7. Вбрасываются одновременно две кости. Событие A сумма выпавших очков на двух костях равна шести. Выписать элементарные события, составляющие A и найти его вероятность.
- 8. На карточках побуквенно написано слово «ротор». Карточки перемешиваются, выбирается три карточки, и выкладываются одна за другой. Найти вероятность того, что получится слово «тор».

Вариант 3

- 1. Найти точки локальных экстремумов функции $y = \frac{x^2 x 1}{x^2 2x}$ и вычислить ее экстремальные значения.
- 2. Вычислить неопределенный интеграл $\int \left(\frac{\sqrt[3]{x}}{x} + 2x^3 4\right) dx$.
- 3. Вычислить определенный интеграл $\int_{-1}^{27} \sqrt[3]{x} \, dx$
- 4. Вычислить площадь плоской фигуры, ограниченной графиками функций $y = 3x^2$, y = 3x
- 5. Событие F_i Вы клиент i-ой фирмы, i = 1, 2, 3. Выразить через F_i событие F Вы не являетесь клиентом двух фирм.

16

- 6. Экономист-аналитик предполагает, что вероятность роста стоимости акций компании в следующем году будет равна 0,7, если экономика страны будет на подъеме, и эта же вероятность будет равна 0,35, если экономика страны не будет успешно развиваться. По его мнению, вероятность экономического подъема в новом году равна 0,8. Найти вероятность того, что акции поднимутся в цене в следующем году.
- 7. Брошены две игральные кости. Выписать элементарные события благоприятствующие событию сумма выпавших очков равна четырем, и найти его вероятность.
- 8. Из ящика, содержащего четыре билета с номерами 1, 2, 3, 4, вынимают одному все билеты в произвольном порядке. Найти вероятность того, что хотя бы у одного билета порядковый номер при выемке совпадает с его собственным номером, в предположении равновероятности выемки билетов.

- 1. Найти точки локальных экстремумов функции $y = \frac{x+1}{(x-1)^2}$ и вычислить ее экстремальные значения.
- 2. Вычислить неопределенный интеграл $\int \left(\frac{2x^2}{\sqrt{x}} \frac{5}{x} + 6\right) dx$.
- 3. Вычислить определенный интеграл $\int_{3}^{7} \sqrt{x-3} \, dx$.
- 4. Вычислить площадь плоской фигуры, ограниченной графиками функций $y = x^2 + 4$, y = x + 4.
- 5. Пусть A событие Вы любите яблоки; B любите бананы; C любите цитрусовые. Выразить через A, B, C следующее событие D Вы любите фрукты.
- 6. Предприятие получает детали от двух поставщиков. Первый из них поставляет 65 % деталей, а второй 35 %. Первый поставщик поставляет 97% качественной продукции, а второй 90 % качественной продукции. Найти вероятность того, что эта деталь изготовлена первым поставщиком, если наудачу взятая деталь оказалась качественной.
- 7. Вероятность того, что стрелок попадет в мишень при одном выстреле, равна 0,6. Стрелку выдаются три патрона и он стреляет до первого попадания. Найти вероятность того, что он попал при третьем выстреле.
- 8. В ящике 10 одинаковых деталей, помеченных номерами 1, 2, ..., 10. Наудачу извлечены шесть деталей. Найти вероятность того, что среди извлеченных деталей окажутся детали № 1 и № 2.

- 1. Найти точки локальных экстремумов функции $y = \frac{x}{9-x}$ и вычислить ее экстремальные значения.
- 2. Вычислить неопределенный интеграл $\int \frac{dx}{\sqrt{1+x}}$.
- 3. Вычислить определенный интеграл $\int_{\sqrt{3}}^{3} \frac{1}{3+x^2} dx$.
- 4. Вычислить площадь плоской фигуры, ограниченной графиками функций $y = x^2 + 3$, y = 4.
- 5. Событие M_i i-ый магазин закрыт. Выразить через M_i событие M нельзя попасть в какой-то магазин.
- 6. На фабрике 3 станка производят 40 %, 35 % и 25 % соответственно. В их продукции брак составляет 2 %, 3 % и 5 % соответственно. Найти вероятность того, что случайно выбранное изделие является браком?
- 7. В читальном зале имеется шесть учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял три учебника. Найти вероятность того, что среди них только один в переплете.
- 8. Восемь вариантов контрольной работы, каждый из которых написан на отдельной карточке, перемешиваются и распределяются случайным образом среди шести студентов, сидящих в одном ряду, причем каждый получает по одному варианту. Найти вероятность события варианты с номерами 1 и 2 останутся неиспользованными.

Вариант 6

- 1. Найти точки локальных экстремумов функции $y = \frac{(x-2)^2}{x+1}$ и вычислить ее экстремальные значения.
- 2. Вычислить неопределенный интеграл $\int \sqrt{5-4x} \, dx$.
- 3. Вычислить определенный интеграл $\int_{\pi/8}^{\pi/6} \frac{dx}{\cos^2 x}.$
- 4. Вычислить площадь плоской фигуры, ограниченной графиками функций $y = x^2$, y = 4x.
- 5. Событие F_i в i-ом кинотеатре демонстрируется новый фильм, i=1,2,3. Выразить через F_i событие F только в двух кинотеатрах идут старые фильмы.
- 6. Предприятие получает детали от двух поставщиков. Первый из них поставляет 65 % деталей, а второй 35 %. Первый поставщик поставляет

18

- 97% качественной продукции, а второй 90 %. Найти вероятность того, что эта деталь изготовлена вторым поставщиком, если наудачу взятая деталь оказалась качественной.
- 7. Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго 0,8. Найти вероятность того, что при одном залпе в мишень попадает только один из стрелков.
- 8. Трое мужчин и три женщин случайным образом рассаживаются в ряд на шести местах. Найти вероятности события никакие два мужчины не будут сидеть рядом.

- 1. Найти точки локальных экстремумов функции $y = x^2 2\ln x$ и вычислить ее экстремальные значения.
- 2. Вычислить неопределенный интеграл $\int \frac{dx}{(2+x)^2}$.
- 3. Вычислить определенный интеграл $\int_{0}^{0.5} \frac{dx}{\cos^2 5x}.$
- 4. Вычислить площадь плоской фигуры, ограниченной графиками функций $y^2 = x$, x = 2.
- 5. В семье трое детей. Записать в виде формулы событие среди детей только два мальчика и найти его вероятность, если вероятность рождения мальчика равна 0,5.
- 6. С первого автомата на сборку поступает 40 % деталей, со второго 35 %, с третьего 25 %. Среди деталей с первого автомата 2 % бракованных, со второго 3 %, с третьего 5 %. Найти вероятность того, что случайно выбранная деталь оказалась бракованной.
- 7. Две из 3 независимо работающих ламп прибора отказали. Найти вероятность того, что отказали 2-я и 3-я лампы, если вероятности отказа 1-ой, 2-ой и 3-ей ламп соответственно равны: $p_1 = 0.5$, $p_2 = 0.2$, $p_3 = 0.3$.
- 8. Трое мужчин и три женщины случайным образом рассаживаются в ряд на шести местах. Найти вероятности события все мужчины сидят рядом.

Вариант 8

- 1. Найти точки локальных экстремумов функции $y = \ln(x^2 + 1)$ и вычислить ее экстремальные значения.
- 2. Вычислить неопределенный интеграл $\int \frac{dx}{\sqrt[3]{3+x}}$.
- 3. Вычислить определенный интеграл $\int_{-1}^{1} (2 x x^2) dx$.

- 4. Вычислить площадь фигуры, ограниченной прямой $\frac{x}{4} + \frac{y}{2} = 1$ и осями координат.
- 5. Брошены две игральные кости. Найти вероятность события сумма выпавших очков равна восьми, а их разность равна четырем.
- 6. Событие K_i i-тый человек стоит в очереди. Выразить через K_i следующие событие K очереди нет.
- 7. Два из 3 независимо работающих элементов устройства отказали. Найти вероятность того, что отказали 1-й и 2-й элементы, если вероятности отказа 1-го, 2-го и 3-го элементов соответственно равны 0,2; 0,4 и 0,3.
- 8. На стеллаже библиотеки в случайном порядке расставлено 8 учебников, причем 4 из них в переплете. Библиотекарь берет наудачу 4 учебника. Найти вероятность того, что все они в переплете.

- 1. Найти точки локальных экстремумов функции $y = x \ln(1 + x^2)$ и вычислить ее экстремальные значения.
- 2. Вычислить неопределенный интеграл $\int \frac{dx}{4x-2}$.
- 3. Вычислить определенный интеграл $\int_{2\sqrt{3}}^{6} \frac{dx}{12 + x^2}$.
- 4. Вычислить площадь плоской фигуры, ограниченной графиками функций $y = (x-1)^2 + 1$, y = 2.
- 5. Событие O_i i-му покупателю нужна обувь. Выразить через O_i событие никому их покупателей обувь не нужна.
- 6. В больницу поступает в среднем 50% больных с сердечными заболеваниями, 30% с заболеванием почек и 20% с гипертоническими заболеваниями. Вероятности излечения указанных заболеваний равны, соответственно 0,7; 0,8; и 0,9. Больной, поступивший в больницу выписан здоровым. Найти вероятность, что он болел гипертонией.
- 7. Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго 0,8. Найти вероятность того, что при одном залпе в мишень попадает только один из стрелков.
- 8. В ящике 10 деталей, из которых четыре окрашены. Сборщик наудачу взял три детали. Найти вероятность того, что одна из взятых деталей окрашена.

Вариант 10

1. Найти точки локальных экстремумов функции $y = \frac{4-2x}{1-x^2}$ и вычислить ее экстремальные значения.

- 2. Вычислить неопределенный интеграл $\int \sin(2-3x) dx$
- 3. Вычислить определенный интеграл $\int_{1}^{8} \left(4\sqrt[3]{x} \frac{2}{\sqrt[3]{x}} \right) dx$.
- 4. Вычислить площадь плоской фигуры, ограниченной графиками функций $y = x^2 4x + 1$, y = x + 1.
- 5. Событие M_i i-ый ребенок в семье мальчик, i=1,2,3. Выразить через M_i событие в семье из трех детей только одна девочка, и найти его вероятность, если вероятность рождения мальчика равна0,4.
- 6. Изделие проверяется на стандартность одним их двух товароведов. Вероятность проверки изделия первым товароведом равна 0,55, а вторым 0,45. Вероятность того, что изделие будет признано стандартным первым товароведом, равна 0,9, а вторым 0,98. Изделие после проверки признано стандартным. Найти вероятность того, что изделие проверял второй товаровед.
- 7. Два орудия произвела залп, при этом только один снаряд попал в цель. Найти вероятность того, что 1-е орудие попало в цель, если вероятности попадания в цель 1-м и 2-м орудиями равны $p_1 = 0.4$, $p_2 = 0.3$, $p_3 = 0.5$.
- 8. Брошено 3 игральные кости. Предполагая, что все комбинации выпавших очков равновероятны, найти вероятности события не выпало ни одной шестерки.