ТОВАРОВЕДЕНИЕ И ЭКСПЕРТИЗА ТОВАРОВ

Н.П. МАТВЕЙКО, С.К. ПРОТАСОВ, В.В.САДОВСКИЙ

КОНТРОЛЬ ТЯЖЕЛЫХ МЕТАЛЛОВ В РАСТИТЕЛЬНЫХ МАСЛАХ

Сырьем для получения растительных масел являются масличные культуры, произрастающие на почвах, содержащих тяжелые металлы, поэтому в растительных маслах в том или ином количестве они могут содержаться. Для безопасности жизни и здоровья людей содержание тяжелых металлов в растительных маслах регламентируется соответствующими техническими нормативными правовыми актами (ТНПА) и в обязательном порядке контролируется. Важнейшими ТНПА для растительных масел являются санитарные правила и нормы (СанПиН) [1] и стандарты, например ГОСТ 1129-93 [2]. Согласно СанПиН 63 Республики Беларусь, содержание тяжелых металлов во всех видах растительных масел не должно превышать (мг/кг): свинец — 0,1 (арахисовое — 0,2); мышьяк — 0,1; кадмий — 0,05; ртуть — 0,03; железо — 5,0; медь — 0,5 (арахисовое — 10).

Цель работы — методом инверсионной вольтамперометрии определить содержание цинка, кадмия, свинца и меди в растительных маслах, реализуемых торговой сетью Республики Беларусь.

Методика эксперимента. Для исследования отобрано семь видов растительного масла: 1) льняное рафинированное; 2) подсолнечное рафинированное, дезодорированное; 3) подсолнечно-оливковое рафинированное; 4) подсолнечное рафинированное, дезодорированное, вымороженное; 5) подсолнечное с добавлением оливкового, рафинированное, дезодорированное; 6) рапсовое рафинированное, дезодорированное; 7) оливковое первого холодного отжима (прессование), нерафинированное.

Подготовку проб масла проводили мокрой минерализацией двумя способами: 1) с применением нитрата магния $Mg(NO_3)_2$; 2) без применения $Mg(NO_3)_2$.

По первому способу в кварцевый стаканчик помещали пробу анализируемого масла массой $0.5\,\mathrm{r}$ и добавляли $3\,\mathrm{cm}^3\,10\,\%$ спиртового раствора нитрата магния [3] . С помощью программируемой печи ПДП-18М раствор вы-

Николай Петрович МАТВЕЙКО, доктор химических наук, профессор. зав. кафедрой физикохимии материалов Белорусского государственного экономического университета;

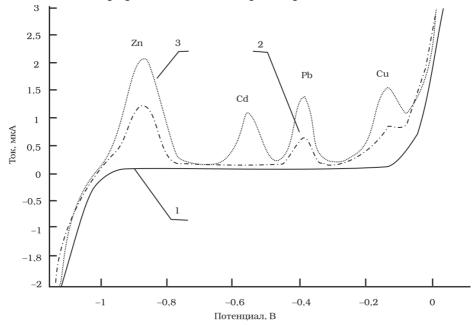
Семен Корнеевич ПРОТАСОВ, кандидат технических наук, доцент кафедры физикохимии материалов Белорусского государственного экономического университета;

Виктор Васильевич САДОВСКИЙ, доктор технических наук, профессор, первый проректор Белорусского государственного экономического университета.

паривали, осадок обугливали, постепенно поднимая температуру до 400 °C и выдерживая при этой температуре 30 мин. Затем осадок озоляли в течение 30 мин при температуре 500 °C. После охлаждения золу растворяли в 2 см³ концентрированной азотной кислоты и 1 см³ 30 % раствора пероксида водорода, после чего выпаривали досуха при температуре 150 °C. Образовавшийся осадок озоляли в течение 180 мин при температуре 500 °C. Операции растворения золы в азотной кислоте и пероксиде водорода, выпаривания раствора и озоления осадка повторяли до получения однородной золы серого цвета.

По второму способу образец растительного масла массой $0.5\,\mathrm{r}$ помещали в кварцевый стаканчик, доливали $3.5\,\mathrm{cm}^3$ концентрированной азотной кислоты, затем, применяя печь ПДП-18М, раствор выпаривали при температуре $120\,^{\circ}\mathrm{C}$ [3]. Образовавшийся осадок растворяли в $3\,\mathrm{cm}^3$ азотной кислоты и $2\,\mathrm{cm}^3$ пероксида водорода, выпаривали при температуре $120\,^{\circ}\mathrm{C}$ и озоляли в течение $30\,\mathrm{mu}$ при температуре $450\,^{\circ}\mathrm{C}$. Золу растворяли в $3\,\mathrm{cm}^3$ азотной кислоты и $2\,\mathrm{cm}^3$ пероксида водорода, выпаривали при температуре $120\,^{\circ}\mathrm{C}$ и снова озоляли в течение $30\,\mathrm{mu}$ при температуре $450\,^{\circ}\mathrm{C}$. Операции растворения золы в азотной кислоте и пероксиде водорода, выпаривания и озоления повторяли до получения однородного остатка серого цвета, для чего необходимо было не менее 5—6 операций. Второй способ минерализации пробы требовал в $2\,\mathrm{pasa}$ больше времени, чем первый.

Золу, полученную после минерализации пробы по первому и по второму способам, растворяли в 1 см³ концентрированной муравьиной кислоты. Объем раствора доводили бидистиллятом до 10 см³. Для анализа из этого раствора отбирали аликвоту объемом 1 см³, помещали ее в двухэлектродную кварцевую ячейку, объем раствора доводили фоновым электролитом до 10 см³. После этого проводили инверсионно-вольтамперометрическое определение тяжелых металлов на анализаторе марки ТА-4 (с применением персонального компьютера). В качестве индикаторного электрода использовали амальгамированную серебряную проволоку. Потенциал измеряли относительно хлорсеребряного электрода сравнения в 1М раствора хлорида калия, который одновременно был вспомогательным электродом. Пробу каждого вида растительного масла анализировали четыре раза.


Вольтамперные кривые регистрировали на фоне 0,4 М раствора муравьиной кислоты при условиях, изложенных в работе [4, 75—79]. Электрохимическую очистку индикаторного электрода выполняли при потенциале –1200 мВ в течение 20 с, концентрирование металлов — при потенциале –1450 мВ в течение 10—30 с (в зависимости от концентрации металлов), успокоение раствора — при потенциале –1200 мВ в течение 10 с, скорость развертки потенциала составляла 80 мВ/с.

Определение тяжелых металлов выполняли методом добавок, используя стандартный раствор, содержащий по $2\,\mathrm{mr/дm^3}$ цинка, кадмия, свинца и меди, приготовленный на основе государственного стандартного образца (ГСО) и бидистиллята. Расчет содержания тяжелых металлов в пробах растительных масел выполняли по разности кривых пробы с добавкой, пробы и фона с использованием специализированной компьютерной программы «VALabTx». Все результаты обрабатывали методом математической статистики [5]: определяли среднее значение (X), дисперсию (V), стандартное отклонение (X), относительное стандартное отклонение (X) и интервальное значение с доверительной вероятностью 95 % (X).

Для учета возможного загрязнения анализируемых растворов используемыми реактивами при подготовке проб по первому способу выполняли холостой опыт, проведя через все стадии подготовки пробы и анализируя 3 см 3 10 % спиртового раствора нитрата магния. Результаты

анализа холостого опыта вычитали из результатов анализа проб растительных масел.

Результаты исследований и их обсуждение. На рисунке в качестве типичного примера представлены вольтамперные кривые фонового электролита (кривая 1), пробы образца растительного масла № 1, подготовленной по первому способу (кривая 2), и такой же пробы образца растительного масла с добавкой 0,05 см³ стандартного раствора, содержащего по 2 мг/дм³ Zn, Cd, Рb и Cu (кривая 3). Из рисунка видно, что на вольтамперной кривой фонового электролита отсутствуют максимумы тока окисления каких-либо редокс-активных компонентов (кривая 1). Это свидетельствует о достаточной чистоте фонового электролита и прежде всего об отсутствии в нем металлов, способных концентрироваться на электроде при потенциале –1450 мВ.

Вольтамперные кривые пробы льняного масла (№ 1), подготовленной по первому способу, на фоне 0,4 М раствора муравьиной кислоты: 1 — фон; 2 — проба масла; 3 — проба масла с добавкой 0,05 см³ стандартного раствора; потенциал накопления — -1450 мВ; скорость развертки — 80 мВ/с; температура — 25 °C

На вольтамперной кривой пробы (кривая 2) регистрируются три максимума тока при потенциалах –870, –390 и –140 мВ, которые соответствуют окислению предварительно сконцентрированных на индикаторном электроде Zn, Pb и Cu. При введении в анализируемый раствор 0,05 см³ стандартного раствора максимумы тока окисления для всех металлов пропорционально увеличиваются, и появляется максимум тока окисления кадмия при потенциале –550 мВ (кривая 3). Аналогичные вольтамперные кривые зарегистрированы во всех исследованных видах растительного масла, пробы которых подготовлены как по первому, так и по второму способу.

По площади пиков на вольтамперных кривых с использованием компьютерной программы «VALabTx» рассчитано содержание Zn, Cd, Pb и Cu в пробах растительных масел. Эти значения за вычетом результатов анализа холостого опыта в случае подготовки проб по первому способу и обработанные методом математической статистики (по четырем параллельным опытам) приведены в табл. 1. Результаты анализа и их обработки методом математической статистики проб растительных масел, подготовленных по второму способу, приведены в табл. 2.

 Таблица 1. Содержание тяжелых металлов в различных видах растительного масла (подготовка проб по первому способу)

Номер	Вид масла	Содержание металла ($X_{\rm cp} \pm x$), мг/кг							
образца		Zn	S _r , %		S _r , %		S _r , %		Sr, %
1	Льняное нерафи-							,	
	нированное	$3,30\pm0,2$	4,4	_	_	0,12±0,006	3,4	0,43±0,01	1,7
2	Подсолнечное ра-								
	финированное, дезодорированное	1 49+0 1	4 Q					0.18±0.007	7 2 8
3	Подсолнечно-	1,40±0,1	4,3	_	_	_		0,10±0,007	2,0
O	оливковое рафи-								
	нированное	2,97±0,2	4,8	0,016±0,001	4,5	0,09±0,004	3,2	0,55±0,02	2,6
4	Подсолнечное ра-								
	финированное, де-								
	зодорированное,	1 00 10 1						0.0010.000	
5	вымороженное	1,63±0,1	4,4	_	_	_	_	0,20±0,008	3 2,9
5	Подсолнечное с добавлением								
	оливкового рафи-								
	нированного, де-								
	зодорированное	$3,91\pm0,2$	3,7	0,024±0,002	5,9	0,11±0,005	3,3	0,38±0,014	1 2,7
6	Рапсовое рафи-								
	нированное, де-								
-	зодорированное	$1,59\pm0,1$	4,5	_	_	0,001±0,0001	7,2	0,16±0,006	5 2,7
7	Оливковое перво-								
	го холодного отжима, нерафини-								
	рованное	3,31±0,2	4,3	0,018±0,001	3,9	0,05±0,002	2,9	0,56±0,02	2,6

Таблица 2. Содержание тяжелых металлов в различных видах растительного масла (подготовка проб по второму способу)

Номер		Содержание металла ($X_{\rm cp} \pm x$), мг/кг							
образца		Zn	S _r , %		S _r , %		S _r , %		S _r , %
	1	5,10±0,3	4,2	_	_	0,15±0,006	2,9	0,64±0,02	2,2
2	Подсолнечное рафинированное, дезодорированное	1,64±0,1	4,4	_	_	_		0,10±0,00	5 3,4
	Подсолнечно-олив- ковое рафиниро-		4.7	0.00410.0000	5 4	0.0710.004	4.1	0.0410.00	
4	ванное Подсолнечное рафинированное, дезодорированное,	3,09±0,2	4,7	0,004±0,0003	5,4	0,07±0,004	4,1	0,34±0,02	4,2
5		1,68±0,1	4,3	-	_	-	_	0,28±0,008	8 2,0
	ного, дезодориро- ванное Рапсовое рафини-		3,6	0,003±0,0002	4,8	0,12±0,005	3,0	0,24±0,009	9 2,7
7	рованное, дезодорированное Оливковое первого холодного отжима,	1,70±0,1	4,2	-	-	0,001±0,0001	7,2	0,06±0,003	3 3,6
	нерафинированное	3,42±0,2	4,2	0,002±0,0001	3,8	0,04±0,002	4,0	0,22±0,008	8 2,6

Анализ результатов исследования растительных масел, представленных в табл. 1 и 2, показывает, что во всех образцах масел есть Zn и Cu. Значительное количество Zn содержится в образцах растительных масел \mathbb{N} 1, 3, 5, 7 (льняное, подсолнечно-оливковое, подсолнечное с добавлением оливкового, оливковое). В образцах рапсового и подсолнечного масла без добав-

ления оливкового (№ 6, 2 и 4) содержание Zn примерно в 2 раза меньше. Более высокое содержание меди также характерно для льняного, подсолнечно-оливкового, подсолнечного масла с добавлением оливкового и оливкового (№ 1, 3, 5 и 7). Причем содержание меди в льняном, оливковом и подсолнечно-оливковом масле незначительно превышает допустимый уровень, регламентируемый СанПиН [1] — на 0,14, 0,06 и 0,05 мг/кг соответственно.

В образцах двух видов подсолнечного масла (\mathbb{N} 2, 4) свинец не обнаружен. Незначительное количество свинца характерно для рапсового масла (0,001 мг/кг). Для льняного и подсолнечного масла с добавлением оливкового (\mathbb{N} 1 и 5) наблюдается небольшое превышение предельно допустимого уровня свинца (на 0,05 и 0,02 мг/кг соответственно).

Содержание кадмия во всех исследованных видах растительного масла не превышает предельно допустимый уровень. При этом в образцах четырех видов растительного масла (№ 1, 2, 4 и 6) кадмий не обнаружен.

Сравнивая данные табл. 1 и 2 для одних и тех же видов растительного масла, можно отметить следующее. При подготовке проб по второму способу определяемое количество цинка во всех изученных образцах масла выше, а содержание кадмия ниже, чем при подготовке проб по первому способу. Второй способ подготовки проб дает более высокое содержание меди для образцов № 1 и 4 и более низкое — для образцов № 2, 3, 5, 6, 7. Вместе с тем, как видно из таблиц, и первый, и второй способы могут быть использованы при подготовке проб растительного масла для определения тяжелых металлов методом инверсионной вольтамперометрии, поскольку позволяют получать идентичные результаты и делать одинаковые выводы. Однако подготовка проб масла по второму способу более трудоемка и требует примерно в два раза больше времени.

Следует отметить, что приведенные значения содержания тяжелых металлов в растительном масле характеризуют лишь использованные в данной работе образцы масла и не могут быть распространены на другие, в том числе аналогичные виды растительных масел. Данные результаты приведены только с целью иллюстрации возможностей инверсионно-вольтамперометрического метода.

Итак, инверсионная вольтамперометрия позволяет определять содержание тяжелых металлов в растительных маслах с относительным стандартным отклонением, не превышающим $7.2\,\%$, после подготовки проб как с применением нитрата магния, так и без него.

Подготовка проб с применением нитрата магния для вольтмаперометрического анализа растительного масла требует примерно в два раза меньше времени, чем без него.

Методом инверсионной вольтамперометрии установлено незначительное превышение допустимого уровня свинца и меди в образцах льняного и подсолнечного масла с добавлением оливкового.

Литература

- 1. Гигиенические требования к качеству и безопасности продовольственного сырья и пищевых продуктов: СанПиН 63 Республики Беларусь. Введ. 09.06.2009. Минск: Изд-во стандартов, 2009.
- 2. Масло подсолнечное. Технические условия: ГОСТ 1129-93. Введ. 01.01.1996. М.: Изд-во стандартов, 1999.
- З. *Носкова, Г.Н.* Минерализация пищевых продуктов. Методическое пособие по подготовке проб для определения содержания токсичных элементов. Практическое руководство / Г.Н. Носкова, А.В. Заичко, Е.Е. Иванова. Томск: Изд-во ТПУ, 2007.
- 4. *Матвейко, Н.П.* Исследование качества продукции (на примере виноградных вин) / Н.П. Матвейко, С.К.Протасов // Весн. беларус. дзярж. экан. ун-та. 2011. №.3.
 - 5. *Васильев*, В.П. Аналитическая химия: в 2 ч. / В.П. Васильев. М.: Дрофа, 2004. Ч. 1.

Статья поступила в редакцию 05.04. 2012 г.