Учреждение образования "Белорусский государственный экономический университет"

УТВЕРЖДАЮ

Ректор Учреждения образования "Белорусский тусударственный экономический университет"

_ В.Н.Шимов

Регистрационный № УД 1746-15 /баз.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Учебная программа учреждения высшего образования по учебной дисциплине для специальности 1-31 03 06 «Экономическая кибернетика (по направлениям)»

СОСТАВИТЕЛИ:

M. Π . Дымков, заведующий кафедрой высшей математики учреждения образования «Белорусский государственный экономический университет», доктор физико-математических наук, профессор.

Е. А. Шинкевич, доцент кафедры высшей математики учреждения образования «Белорусский государственный экономический университет», кандидат физико-математических наук, доцент.

РЕЦЕНЗЕНТЫ:

Белько И.В. — профессор кафедры высшей математики учреждения образования «Белорусский аграрный технический университет», доктор физико-математических наук, профессор;

Ловенецкая Е.И. – доцент кафедры высшей математики учреждения образования «Белорусский государственный технологический университет», кандидат физико-математических наук, доцент.

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой высшей математики учреждения образования «Белорусский государственный экономический университет» (протокол $N_{\underline{0}}$ от $\underline{23.01.2015}$)

Научно-методическим советом учреждения образования «Белорусский государственный экономический университет» (протокол № 3 от 18.02.2015)

Ответственный за редакцию: Шинкевич Е.А.

Ответственный за выпуск: Шинкевич Е.А.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

учебной Актуальность изучения дисциплины В высшего образования и её роль в профессиональной подготовке выпускника вуза. Стремительное развитие и внедрение новых технологий, их конкуренция на мировом рынке, прогресс средств вычислительной техники, а также научно-технический прогресс в целом предъявляют повышенные требования к качеству подготовки специалистов и, в частности, к их математическому образованию. Современный специалист обязан владеть основами математического моделирования и его реализации в компьютерных информационных технологиях, чтобы конкурентоспособным и выдерживать темпы научно-технического прогресса. Математические методы выступают в этой связи как возможность дать унифицированный научный подход к изучению различных физических социальных явлений реального мира путем составления их математических моделей, которые во многих случаях описываются одними и теми же математическими структурами. Таким образом, математическое моделирование позволяет не только изучить общие закономерности различных производственных задач, но и дать универсальные рекомендации по их решению.

Цели и задачи учебной дисциплины. Изучение высшей математики в учреждении высшего образования имеет целью воспитание современного гармонически сочетающего себе В профессиональное мастерство, широкую эрудицию и компетентность, математическую культуру, творческую реализацию по выявлению и математическому описанию сущностных оснований и связей между разнообразными процессами окружающего мира, интеллектуальное развитие и формирование общей культуры личности в целом.

Учебная дисциплина «Теория вероятностей и математическая статистика» знакомит студентов с основными методами построения и анализа математических моделей случайных явлений.

Задача преподавания учебной дисциплины «Теория вероятностей и состоит в выяснении сущности научного математическая статистика» подхода к описанию и исследованию реальных производственных и социальных процессов, роли математических методов системе естественнонаучных дисциплин как способе познания окружающей действительности, в развитии у обучаемых способности к логическому и алгоритмическому мышлению, умений, знаний и приемов исследования и решения математически формализованных задач.

Основой для изучения учебной дисциплины «Теория вероятностей и математическая статистика» являются учебные дисциплины «Математический анализ», «Линейная алгебра и аналитическая геометрия. Методы, излагаемые в учебной дисциплине «Теория вероятностей и

математическая статистика», используются в учебных дисциплинах «Исследование операций», «Математическая теория финансовых рисков», «Имитационное и статистическое моделирование», «Эконометрика» а также в ряде дисциплин специализаций.

Выпускник специальности экономическая кибернетика должен иметь представление:

- о месте математики в системе естественных наук;
- о математике как особом способе познания мира;
- о содержании таких разделов, как теория вероятностей, математическая статистика, теория случайных процессов, теория массового обслуживания в пределах соответствующей программы;

знать:

- основы теории вероятностей, математической статистики, корреляционно-регрессионного анализа, дисперсионного анализа, теории случайных процессов, теории массового обслуживания;
- основные методы решения математических задач, возникающих в сфере профессиональной деятельности

уметь:

- использовать математические модели и методы при решении экономических задач;
- решать типовые задачи теории вероятностей, математической статистики, корреляционно-регрессионного анализа, дисперсионного анализа, теории случайных процессов, теории массового обслуживания из области профессиональной деятельности.

Материал для самостоятельной работы реализуется через УСР – управляемую самостоятельную работу студентов под контролем преподавателя.

В соответствии с типовыми учебными планами специальности 1-31 03 06 «Экономическая кибернетика (по направлениям)» учебная программа предусматривает для изучения учебной дисциплины 240 учебных часов, в том числе 98 аудиторных часов: лекции — 50 часов, практические занятия — 48 часов, возможно проведение лабораторных работ. В течение семестра предусматривается проведение трех двухчасовых контрольных работ. Рекомендуемые формы контроля — экзамен, зачет.

ПРИМЕРНЫЙ ТЕМАТИЧЕСКИЙ ПЛАН ДИСЦИПЛИНЫ ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

№ п/п	Тема	Распределение аудиторных часов	
		Лекции (кол. часов)	Практические занятия (кол. часов)
1.	Теория вероятностей	20	18
2.	Элементы математической статистики	12	12
3.	Корреляционно-регрессионный анализ	8	8
4.	Основы дисперсионного анализа	4	4
5.	Элементы теории случайных процессов и теории массового обслуживания	6	6
Всего:		50	48

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Тема 1. ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Вероятность случайных событий

Предмет и метод теории вероятностей. Случайные события и их классификация. Операции над событиями и их свойства. Понятие вероятности в классической модели. Свойства вероятности. Элементы комбинаторики. Частость и статистическая вероятность. Теоремы сложения и умножения вероятностей. Формула полной вероятности. Формула Байеса и ее экономическая интерпретация. Формула Бернулли. Локальная и интегральная теоремы Муавра-Лапласа.

Случайные величины

Понятие случайной величины. Функция распределения случайной величины и ее свойства. Дискретная случайная величина. Ряд распределения и его свойства. Непрерывная случайная величина. Плотность распределения вероятностей и ее свойства. Числовые характеристики случайной величины.

Основные законы распределения случайных величин

Биноминальный закон распределения и его числовые характеристики. Закон распределения Пуассона и его числовые характеристики. Геометрическое и гипергеометрическое распределения. Законы распределения непрерывных случайных величин (НСВ): равномерный, показательный, нормальный.

Многомерные случайные величины

Понятие многомерной случайной величины. Функция распределения двумерной случайной величины и ее свойства. Плотность распределения двумерной случайной величины и ее свойства. Зависимые и независимые случайные величины. Корреляционный момент и его свойства. Коэффициент корреляции и его свойства. Нормальное двумерное распределение.

Закон больших чисел и предельные теоремы

Неравенство Маркова. Неравенство Чебышева. Теорема Чебышева. Сходимость по вероятности. Теорема Бернулли. Понятие о теореме Ляпунова. Нормальное распределение как предельное для биноминального и пуассоновского распределений. Значение закона больших чисел для практики.

Тема 2. ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

Введение в математическую статистику

Основные понятия математической статистики. Предмет и задачи ма-

тематической статистики. Генеральная совокупность и выборка. Вариационные ряды. Выборочные аналоги функций распределения. Полигон и гистограмма. Статистические характеристики вариационных рядов. Среднее арифметическое и его свойства. Выборочная дисперсия и ее свойства. Выборочные начальные и центральные моменты.

Статистическое оценивание

Понятие о точечной оценке числовой характеристики случайной величины, свойства точечной оценки. Точечные оценки математического ожидания и дисперсии. Частость как точечная оценка вероятности события. Методы получения точечных оценок. Параметрическое оценивание закона распределения. Интервальная оценка числовой характеристики случайной величины. Интервальные оценки параметров нормального распределения. Интервальная оценка вероятности события.

Проверка статистических гипотез

Понятие статистической гипотезы. Основные этапы проверки гипотезы. Проверка гипотез о числовых значениях параметров нормального распределения. Проверка гипотезы о равенстве математических ожиданий двух нормальных распределений. Проверка гипотезы о равенстве дисперсий двух нормальных распределений. Проверка гипотезы о числовом значении вероятности события. Проверка гипотезы о равенстве вероятностей. Проверка гипотезы о модели закона распределения. Критерии согласия Пирсона и Колмогорова.

Тема 3. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ

Функциональная, стохастическая и корреляционная зависимости. Функция регрессии. Генеральное и выборочное корреляционные отношения как измерители степени корреляционной и стохастической зависимости. Линейная функция регрессии. Коэффициент корреляции. Погрешность выборочного линейного уравнения регрессии. Проверка гипотезы о линейности функции регрессии. Примеры нелинейной функции регрессии. Множественная регрессия. Ранговая корреляция. Выборочные коэффициенты ранговой корреляции Спирмена и Кендалла, проверка их значимости.

Тема 4. ОСНОВЫ ДИСПЕРСИОННОГО АНАЛИЗА

Задача дисперсионного анализа и предварительная обработка результатов наблюдений. Условия проведения дисперсионного анализа. Критерий Бартлетта. Модель однофакторного дисперсионного анализа. Двухфакторный дисперсионный анализ с одним наблюдением. Модель двухфакторного дисперсионного анализа.

Тема 5. ЭЛЕМЕНТЫ ТЕОРИИ СЛУЧАЙНЫХ ПРОЦЕССОВ И ТЕОРИИ МАССОВОГО ОБСЛУЖИВАНИЯ

Основные понятия теории случайных процессов. Числовые характеристики случайного процесса. Основные понятия теории массового обслуживания. Потоки событий. Марковские процессы. Уравнение Колмогорова. Процессы гибели и размножения. Системы массового обслуживания с отказами. Применение марковских цепей в экономике.

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ ЛИТЕРАТУРА

Основная:

- 1. Высшая математика для экономистов: в 3 томах. Т. 2. Теория вероятностей. Методы оптимизации. Учебник. / Гайшун И.В., Минюк С.А. и др. Минск: БГЭУ, 2005.
- **2.** Гмурман, В. Е. Руководство к решению задач по теории вероятностей и математической статистике / В. Е. Гмурман. М.: Высшая школа, 2005.
- **3.** Кремер, Н. Ш. Теория вероятностей и математическая статистика: учеб. для студентов вузов, обучающихся по экономическим специальностям / Н. Ш. Кремер. 3-е изд., перераб. и доп. М.: ЮНИТИ-ДАНА, 2010. 551с.
- **4.** Маталыцкий, М.А. Теория вероятностей, математическая статистика и случайные процессы: учеб. пособие / М.А. Маталыцкий, Г.А. Хацкевич. Минск: Выш. шк., 2012. 720 с.
- **5.** Письменный, Д. Т. Конспект лекций по теории вероятностей и математической статистике / Д. Т. Письменный. М.: Айрис-пресс, 2004.
- **6.** Сборник задач по теории вероятностей, математической статистике и теории случайных функций: Учебное пособие / Под общей ред. А.А. Свешникова. 4-е изд., стер. СПб.: Издательство «Лань», 2008. 448с.

Дополнительная:

- 1. Айвазян, С. А. Прикладная статистика и основы эконометрики / С. А. Айвазян, В. С. Мхитарян. М.: ЮНИТИ, 1998.
- 2. Барковская, Л.С. Практикум по теории вероятностей / Л. С. Барковская, Л.В. Станишевская, Ю.Н. Черторицкий. Минск: БГЭУ, 2004.
- 3. Белько, И.В. Теория вероятностей и математическая статистика. Примеры и задачи / И.В. Белько, Г.П. Свирид. Минск: Новое знание, 2002.-250 с.
- 4. Гмурман, В.Е. Теория вероятностей и математическая статистика / В.Е. Гмурман. М.: Выс. шк., 1979 г.
- 5. Лихолетов, И.И., Мацкевич И.П. Руководство к решению задач по высшей математике, теории вероятностей и математической статистике / И.И.Лихолетов, И.П. Мацкевич. Минск: Высшая школа, 1979.
- 6. Мацкевич, И.П. Высшая математика: теория вероятностей и математическая статистика: учебник / И.П. Мацкевич, Г.П. Свирид. Минск: Выш. шк., 1993. 269 с.
- 7. Мацкевич, И.П. Сборник задач и упражнений по высшей математике. Теория вероятностей и математическая статистика / Г.П. Свирид, Г.М. Булдык. Минск: Выш. шк., 1996. 318 с.