Потеря рабочих мест. Ожидается, что ИИ нарушит рынок труда, вызвав опасения, что автоматизация на основе ИИ вытеснит значительную часть профессий. Согласно отчету Всемирного экономического форума, почти четверть опрошенных организаций видят в нем причину потери рабочих мест.

Отсутствие ответственности. Одним из наиболее неопределенных и развивающихся рисков ИИ является отсутствие ответственности. Кто несет ответственность, когда система ИИ выходит из строя или за последствия разрушительных решений инструментов ИИ? Эти вопросы выходят на первый план в случаях смертельных аварий и опасных столкновений с участием беспилотных автомобилей и неправомерных арестов на основе систем распознавания лиц.

Отсутствие объяснимости и прозрачности. Алгоритмы и модели ИИ часто воспринимаются как черные ящики, внутренние механизмы и процессы принятия решений которых остаются загадкой даже для исследователей ИИ, которые тесно работают с этой технологией. Эта непрозрачность и непонятность подрывают доверие и скрывает потенциальные опасности ИИ.

Дезинформация и манипуляция. Как и в случае с кибератаками, злоумышленники используют технологии ИИ для распространения дезинформации и обмана, влияя на решения и действия людей и манипулируя ими. Это могут быть ложные изображения или видео, распространяющиеся через социальные сети, несущие ущерб репутации и вымогая деньги у жертв. В мае 2024 года фальсифицированное изображение взрыва возле Пентагона всколыхнуло рынки. Изображение, созданное искусственным интеллектом, вызвало страхи, которые обрушили американские акции. Это событие показало, насколько эта технология может быть опасной.

Список использованных источников

- 1. Soh, S., S. Talaifar, G. M. Harari, «Identity Development in the Digital Context», Social and Personality Psychology Compass, 18 (2), e12940, 2024
- 2. Noy, S., W. Zhang, «Experimental Evidence on the Productivity Effects of Generative Artificial Intelligence», Science, 381 (6654), 187–92, 2023
- 3. De Freitas, J., S. Agarwal, B. Schmitt, N. Haslam, «Psychological Factors Underlying Attitudes toward AI Tools», Nature Human Behaviour, 7 (November), 1845–54, 2023.

А. А. Литвинович, аспирант, преподаватель, БГУ (г. Минск) е-mail: litvinovich@bsu.by
М. М. Ерёменко, канд. экон. наук, доцент, Институт жилища — НИПТИС им. Атаева С.С. (г. Минск) е-mail: zilpolniptis@gmail.com
Э. М. Аксень, д-р экон. наук, профессор, БГЭУ (г. Минск) е-mail: eaksen@mail.ru,

О НЕПРЕРЫВНО-ВРЕМЕННОМ МОДЕЛИРОВАНИИ ОПТИМАЛЬНОГО РАСПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЕЙ РЕЗУЛЬТАТИВНОСТИ ЖИЛИЩНОЙ ПОЛИТИКИ С УЧЕТОМ ЗАПАЗДЫВАНИЯ

Нами разработана методика построения и максимизации межвременного интегрального социально-экономического показателя в непрерывном времени с учетом ограничений на показатели результативности жилищной политики, а также с учетом запаздывания. Предлагаемая методика направлена на улучшение прогнозирования и планирования сбалансированного распределения бюджетных ресурсов на жилищную политику по регионам.

Пусть n — число регионов в рассматриваемой социально-экономической системе, m — число фигурирующих в модели показателей результативности жилищной политики, $x_{ij}(t)$ — j-й показатель результативности жилищной политики в i-м регионе в момент времени t ($i=\overline{1,n}$, $j=\overline{1,m}$), s — число социально-экономических показателей, $y_{ik}(t)$ — k-й социально-экономический показатель жилищной политики в i-м регионе в момент времени t ($i=\overline{1,n}$, $k=\overline{1,s}$).

Для того, чтобы учесть запаздывание влияния объясняющих факторов $x_{ij}(t)$ на результирующие показатели $y_{ik}(t)$, определим ненаблюдаемые показатели $\tilde{x}_{ijk}(t)$ с помощью следующего дифференциального уравнения:

$$\frac{d}{dt}\ln\left[\tilde{x}_{ijk}(t)\right] = \gamma_{ijk} \cdot \left\{\ln\left[x_{ij}(t)\right] - \ln\left[\tilde{x}_{ijk}(t)\right]\right\}, \ i = \overline{1,n}, \ j = \overline{1,m}, \ k = \overline{1,s},$$

где γ_{ijk} — параметры, которые мы оцениваем с помощью фактических данных. Через $\hat{y}_{ik}(t)$ обозначим прогнозное значение k-го социально-экономического показателя результативности жилищной политики в i-м регионе в момент времени t ($i=\overline{1,n}$, $k=\overline{1,s}$).

Будем использовать следующую формулу для нахождения прогнозных значений:

$$\hat{y}_{ik}(t)$$
: $\hat{y}_{ik}(t) = a_{ik} \prod_{j=1}^{m} \tilde{x}_{ijk}^{b_{ijk}}(t), i = \overline{1, n}, \quad k = \overline{1, s}$

где a_{ik} и b_{ijk} – параметры, которые мы также оцениваем с помощью фактических данных. Введем интегральный социально-экономический показатель Y(t) и соответствующий межвременной показатель $Y(T_1,T_2)$ по формулам:

$$Y(t) \coloneqq \prod_{i=1}^n \prod_{k=1}^s y_{ik}^{\alpha_{ik}(t)}(t)$$
 и $Y(T_1, T_2) = \exp\left(\int_{T_1}^{T_2} \varphi(t) \ln Y(t) dt\right)$,

где $\alpha_{ik}(t)$ – и $i=\overline{1,n}$ – весовые коэффициенты.

В рамках нашей модели в момент времени t суммарное взвешенное значение j-го показателя результативности жилищной политики в целом не должно превышать планового значения. Тогда при планировании показателей результативности жилищной политики по регионам нужно учитывать следующие ограничения:

$$\sum_{i=1}^{n} c_{ij}(t) x_{ij}(t) \leq B_{j}(t), j = \overline{1, m}, t \in [T_{1}, T_{2}],$$

где $c_{ij}(t)$ — известные коэффициенты, $\left[T_1,T_2\right]$ — период планирования.

Нами получено аналитическое решение задачи оптимального распределения показателей результативности жилищной политики по регионам, в которой в качестве целевой функции выступает указанный выше межвременной интегральный показатель и учитываются приведенные выше ограничения по регионам. Также исследован случай с бесконечным горизонтом планирования и выведены формулы для расчета долей показателей результативности жилищной политики по регионам.